llvm-6502/include/llvm/Value.h

223 lines
7.6 KiB
C
Raw Normal View History

//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the very important Value class. This is subclassed by a
// bunch of other important classes, like Instruction, Function, Type, etc...
//
// This file also defines the Use<> template for users of value.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_VALUE_H
#define LLVM_VALUE_H
#include "llvm/AbstractTypeUser.h"
#include "llvm/Use.h"
#include "llvm/Support/Casting.h"
#include <string>
namespace llvm {
class Constant;
class Argument;
class Instruction;
class BasicBlock;
class GlobalValue;
class Function;
class GlobalVariable;
class SymbolTable;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
/// Value - The base class of all values computed by a program that may be used
/// as operands to other values.
///
class Value {
private:
unsigned SubclassID; // Subclass identifier (for isa/dyn_cast)
PATypeHolder Ty;
iplist<Use> Uses;
std::string Name;
void operator=(const Value &); // Do not implement
Value(const Value &); // Do not implement
public:
Value(const Type *Ty, unsigned scid, const std::string &name = "");
virtual ~Value();
/// dump - Support for debugging, callable in GDB: V->dump()
//
virtual void dump() const;
/// print - Implement operator<< on Value...
///
virtual void print(std::ostream &O) const = 0;
/// All values are typed, get the type of this value.
///
inline const Type *getType() const { return Ty; }
// All values can potentially be named...
inline bool hasName() const { return !Name.empty(); }
inline const std::string &getName() const { return Name; }
virtual void setName(const std::string &name, SymbolTable * = 0) {
Name = name;
}
/// replaceAllUsesWith - Go through the uses list for this definition and make
/// each use point to "V" instead of "this". After this completes, 'this's
/// use list is guaranteed to be empty.
///
void replaceAllUsesWith(Value *V);
// uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous.
// Only use when in type resolution situations!
void uncheckedReplaceAllUsesWith(Value *V);
//----------------------------------------------------------------------
// Methods for handling the vector of uses of this Value.
//
typedef UseListIteratorWrapper use_iterator;
typedef UseListConstIteratorWrapper use_const_iterator;
typedef iplist<Use>::size_type size_type;
size_type use_size() const { return Uses.size(); }
bool use_empty() const { return Uses.empty(); }
use_iterator use_begin() { return Uses.begin(); }
use_const_iterator use_begin() const { return Uses.begin(); }
use_iterator use_end() { return Uses.end(); }
use_const_iterator use_end() const { return Uses.end(); }
User *use_back() { return Uses.back().getUser(); }
const User *use_back() const { return Uses.back().getUser(); }
/// hasOneUse - Return true if there is exactly one user of this value. This
/// is specialized because it is a common request and does not require
/// traversing the whole use list.
///
bool hasOneUse() const {
iplist<Use>::const_iterator I = Uses.begin(), E = Uses.end();
if (I == E) return false;
return ++I == E;
}
/// addUse/killUse - These two methods should only be used by the Use class.
///
void addUse(Use &U) { Uses.push_back(&U); }
void killUse(Use &U) { Uses.remove(&U); }
/// getValueType - Return an ID for the concrete type of this object. This is
/// used to implement the classof checks. This should not be used for any
/// other purpose, as the values may change as LLVM evolves. Also, note that
/// starting with the InstructionVal value, the value stored is actually the
/// Instruction opcode, so there are more than just these values possible here
/// (and Instruction must be last).
///
enum ValueTy {
ArgumentVal, // This is an instance of Argument
BasicBlockVal, // This is an instance of BasicBlock
FunctionVal, // This is an instance of Function
GlobalVariableVal, // This is an instance of GlobalVariable
UndefValueVal, // This is an instance of UndefValue
ConstantExprVal, // This is an instance of ConstantExpr
ConstantAggregateZeroVal, // This is an instance of ConstantAggregateNull
SimpleConstantVal, // This is some other type of Constant
InstructionVal, // This is an instance of Instruction
ValueListVal // This is for bcreader, a special ValTy
};
unsigned getValueType() const {
return SubclassID;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Value *V) {
return true; // Values are always values.
}
/// getRawType - This should only be used to implement the vmcore library.
///
const Type *getRawType() const { return Ty.getRawType(); }
private:
/// FIXME: this is a gross hack, needed by another gross hack. Eliminate!
void setValueType(unsigned VT) { SubclassID = VT; }
friend class Instruction;
};
inline std::ostream &operator<<(std::ostream &OS, const Value &V) {
V.print(OS);
return OS;
}
inline User *UseListIteratorWrapper::operator*() const {
return Super::operator*().getUser();
}
inline const User *UseListConstIteratorWrapper::operator*() const {
return Super::operator*().getUser();
}
Use::Use(Value *v, User *user) : Val(v), U(user) {
if (Val) Val->addUse(*this);
}
Use::Use(const Use &u) : Val(u.Val), U(u.U) {
if (Val) Val->addUse(*this);
}
Use::~Use() {
if (Val) Val->killUse(*this);
}
void Use::set(Value *V) {
if (Val) Val->killUse(*this);
Val = V;
if (V) V->addUse(*this);
}
// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> inline bool isa_impl<Constant, Value>(const Value &Val) {
return Val.getValueType() == Value::SimpleConstantVal ||
Val.getValueType() == Value::FunctionVal ||
Val.getValueType() == Value::GlobalVariableVal ||
Val.getValueType() == Value::ConstantExprVal ||
Val.getValueType() == Value::ConstantAggregateZeroVal ||
Val.getValueType() == Value::UndefValueVal;
}
template <> inline bool isa_impl<Argument, Value>(const Value &Val) {
return Val.getValueType() == Value::ArgumentVal;
}
template <> inline bool isa_impl<Instruction, Value>(const Value &Val) {
return Val.getValueType() >= Value::InstructionVal;
}
template <> inline bool isa_impl<BasicBlock, Value>(const Value &Val) {
return Val.getValueType() == Value::BasicBlockVal;
}
template <> inline bool isa_impl<Function, Value>(const Value &Val) {
return Val.getValueType() == Value::FunctionVal;
}
template <> inline bool isa_impl<GlobalVariable, Value>(const Value &Val) {
return Val.getValueType() == Value::GlobalVariableVal;
}
template <> inline bool isa_impl<GlobalValue, Value>(const Value &Val) {
return isa<GlobalVariable>(Val) || isa<Function>(Val);
}
} // End llvm namespace
#endif