llvm-6502/lib/Target/AArch64/AArch64CleanupLocalDynamicTLSPass.cpp

144 lines
5.2 KiB
C++
Raw Normal View History

//===-- AArch64CleanupLocalDynamicTLSPass.cpp ---------------------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Local-dynamic access to thread-local variables proceeds in three stages.
//
// 1. The offset of this Module's thread-local area from TPIDR_EL0 is calculated
// in much the same way as a general-dynamic TLS-descriptor access against
// the special symbol _TLS_MODULE_BASE.
// 2. The variable's offset from _TLS_MODULE_BASE_ is calculated using
// instructions with "dtprel" modifiers.
// 3. These two are added, together with TPIDR_EL0, to obtain the variable's
// true address.
//
// This is only better than general-dynamic access to the variable if two or
// more of the first stage TLS-descriptor calculations can be combined. This
// pass looks through a function and performs such combinations.
//
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
using namespace llvm;
namespace {
struct LDTLSCleanup : public MachineFunctionPass {
static char ID;
LDTLSCleanup() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override {
AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
if (AFI->getNumLocalDynamicTLSAccesses() < 2) {
// No point folding accesses if there isn't at least two.
return false;
}
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
return VisitNode(DT->getRootNode(), 0);
}
// Visit the dominator subtree rooted at Node in pre-order.
// If TLSBaseAddrReg is non-null, then use that to replace any
// TLS_base_addr instructions. Otherwise, create the register
// when the first such instruction is seen, and then use it
// as we encounter more instructions.
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) {
MachineBasicBlock *BB = Node->getBlock();
bool Changed = false;
// Traverse the current block.
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;
++I) {
switch (I->getOpcode()) {
Fix PR22408 - LLVM producing AArch64 TLS relocations that GNU linkers cannot handle yet. As is described at http://llvm.org/bugs/show_bug.cgi?id=22408, the GNU linkers ld.bfd and ld.gold currently only support a subset of the whole range of AArch64 ELF TLS relocations. Furthermore, they assume that some of the code sequences to access thread-local variables are produced in a very specific sequence. When the sequence is not as the linker expects, it can silently mis-relaxe/mis-optimize the instructions. Even if that wouldn't be the case, it's good to produce the exact sequence, as that ensures that linkers can perform optimizing relaxations. This patch: * implements support for 16MiB TLS area size instead of 4GiB TLS area size. Ideally clang would grow an -mtls-size option to allow support for both, but that's not part of this patch. * by default doesn't produce local dynamic access patterns, as even modern ld.bfd and ld.gold linkers do not support the associated relocations. An option (-aarch64-elf-ldtls-generation) is added to enable generation of local dynamic code sequence, but is off by default. * makes sure that the exact expected code sequence for local dynamic and general dynamic accesses is produced, by making use of a new pseudo instruction. The patch also removes two (AArch64ISD::TLSDESC_BLR, AArch64ISD::TLSDESC_CALL) pre-existing AArch64-specific pseudo SDNode instructions that are superseded by the new one (TLSDESC_CALLSEQ). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231227 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 09:12:08 +00:00
case AArch64::TLSDESC_CALLSEQ:
// Make sure it's a local dynamic access.
Fix PR22408 - LLVM producing AArch64 TLS relocations that GNU linkers cannot handle yet. As is described at http://llvm.org/bugs/show_bug.cgi?id=22408, the GNU linkers ld.bfd and ld.gold currently only support a subset of the whole range of AArch64 ELF TLS relocations. Furthermore, they assume that some of the code sequences to access thread-local variables are produced in a very specific sequence. When the sequence is not as the linker expects, it can silently mis-relaxe/mis-optimize the instructions. Even if that wouldn't be the case, it's good to produce the exact sequence, as that ensures that linkers can perform optimizing relaxations. This patch: * implements support for 16MiB TLS area size instead of 4GiB TLS area size. Ideally clang would grow an -mtls-size option to allow support for both, but that's not part of this patch. * by default doesn't produce local dynamic access patterns, as even modern ld.bfd and ld.gold linkers do not support the associated relocations. An option (-aarch64-elf-ldtls-generation) is added to enable generation of local dynamic code sequence, but is off by default. * makes sure that the exact expected code sequence for local dynamic and general dynamic accesses is produced, by making use of a new pseudo instruction. The patch also removes two (AArch64ISD::TLSDESC_BLR, AArch64ISD::TLSDESC_CALL) pre-existing AArch64-specific pseudo SDNode instructions that are superseded by the new one (TLSDESC_CALLSEQ). git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@231227 91177308-0d34-0410-b5e6-96231b3b80d8
2015-03-04 09:12:08 +00:00
if (!I->getOperand(0).isSymbol() ||
strcmp(I->getOperand(0).getSymbolName(), "_TLS_MODULE_BASE_"))
break;
if (TLSBaseAddrReg)
I = replaceTLSBaseAddrCall(I, TLSBaseAddrReg);
else
I = setRegister(I, &TLSBaseAddrReg);
Changed = true;
break;
default:
break;
}
}
// Visit the children of this block in the dominator tree.
for (MachineDomTreeNode *N : *Node) {
Changed |= VisitNode(N, TLSBaseAddrReg);
}
return Changed;
}
// Replace the TLS_base_addr instruction I with a copy from
// TLSBaseAddrReg, returning the new instruction.
MachineInstr *replaceTLSBaseAddrCall(MachineInstr *I,
unsigned TLSBaseAddrReg) {
MachineFunction *MF = I->getParent()->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
// Insert a Copy from TLSBaseAddrReg to x0, which is where the rest of the
// code sequence assumes the address will be.
MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
TII->get(TargetOpcode::COPY),
AArch64::X0).addReg(TLSBaseAddrReg);
// Erase the TLS_base_addr instruction.
I->eraseFromParent();
return Copy;
}
// Create a virtal register in *TLSBaseAddrReg, and populate it by
// inserting a copy instruction after I. Returns the new instruction.
MachineInstr *setRegister(MachineInstr *I, unsigned *TLSBaseAddrReg) {
MachineFunction *MF = I->getParent()->getParent();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
*TLSBaseAddrReg = RegInfo.createVirtualRegister(&AArch64::GPR64RegClass);
// Insert a copy from X0 to TLSBaseAddrReg for later.
MachineInstr *Next = I->getNextNode();
MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
TII->get(TargetOpcode::COPY),
*TLSBaseAddrReg).addReg(AArch64::X0);
return Copy;
}
const char *getPassName() const override {
return "Local Dynamic TLS Access Clean-up";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // namespace
char LDTLSCleanup::ID = 0;
FunctionPass *llvm::createAArch64CleanupLocalDynamicTLSPass() {
return new LDTLSCleanup();
}