2003-01-13 01:01:59 +00:00
|
|
|
//===-- PeepholeOptimizer.cpp - X86 Peephole Optimizer --------------------===//
|
2003-10-20 19:43:21 +00:00
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
2003-01-13 01:01:59 +00:00
|
|
|
//
|
|
|
|
// This file contains a peephole optimizer for the X86.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#include "X86.h"
|
|
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
2003-12-01 05:15:28 +00:00
|
|
|
#include "Support/Statistic.h"
|
2003-11-30 06:13:25 +00:00
|
|
|
using namespace llvm;
|
2003-11-11 22:41:34 +00:00
|
|
|
|
2003-01-13 01:01:59 +00:00
|
|
|
namespace {
|
2003-12-01 05:15:28 +00:00
|
|
|
Statistic<> NumPHOpts("x86-peephole",
|
|
|
|
"Number of peephole optimization performed");
|
2003-01-13 01:01:59 +00:00
|
|
|
struct PH : public MachineFunctionPass {
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
|
|
|
|
bool PeepholeOptimize(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator &I);
|
|
|
|
|
|
|
|
virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
2003-11-30 06:13:25 +00:00
|
|
|
FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
|
2003-01-13 01:01:59 +00:00
|
|
|
|
|
|
|
bool PH::runOnMachineFunction(MachineFunction &MF) {
|
|
|
|
bool Changed = false;
|
|
|
|
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
|
2003-01-16 18:07:13 +00:00
|
|
|
for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
|
2003-12-01 05:15:28 +00:00
|
|
|
if (PeepholeOptimize(*BI, I)) {
|
2003-01-13 01:01:59 +00:00
|
|
|
Changed = true;
|
2003-12-01 05:15:28 +00:00
|
|
|
++NumPHOpts;
|
|
|
|
} else
|
2003-01-13 01:01:59 +00:00
|
|
|
++I;
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator &I) {
|
|
|
|
MachineInstr *MI = *I;
|
|
|
|
MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
|
|
|
|
unsigned Size = 0;
|
|
|
|
switch (MI->getOpcode()) {
|
|
|
|
case X86::MOVrr8:
|
|
|
|
case X86::MOVrr16:
|
|
|
|
case X86::MOVrr32: // Destroy X = X copies...
|
|
|
|
if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
|
|
|
|
I = MBB.erase(I);
|
|
|
|
delete MI;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
|
Emit x86 instructions for: A = B op C, where A and B are 16-bit registers,
C is a constant which can be sign-extended from 8 bits without value loss,
and op is one of: add, sub, imul, and, or, xor.
This allows the JIT to emit the one byte version of the constant instead of
the two or 4 byte version. Because these instructions are very common, this
can save a LOT of code space. For example, I sampled two benchmarks, 176.gcc
and 254.gap.
BM Old New Reduction
176.gcc 2673621 2548962 4.89%
254.gap 498261 475104 4.87%
Note that while the percentage is not spectacular, this did eliminate
124.6 _KILOBYTES_ of codespace from gcc. Not bad.
Note that this doesn't effect the llc version at all, because the assembler
already does this optimization.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@9284 91177308-0d34-0410-b5e6-96231b3b80d8
2003-10-20 05:53:31 +00:00
|
|
|
// A large number of X86 instructions have forms which take an 8-bit
|
|
|
|
// immediate despite the fact that the operands are 16 or 32 bits. Because
|
|
|
|
// this can save three bytes of code size (and icache space), we want to
|
|
|
|
// shrink them if possible.
|
|
|
|
case X86::ADDri16: case X86::ADDri32:
|
|
|
|
case X86::SUBri16: case X86::SUBri32:
|
|
|
|
case X86::IMULri16: case X86::IMULri32:
|
|
|
|
case X86::ANDri16: case X86::ANDri32:
|
|
|
|
case X86::ORri16: case X86::ORri32:
|
|
|
|
case X86::XORri16: case X86::XORri32:
|
|
|
|
assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
|
|
|
|
if (MI->getOperand(2).isImmediate()) {
|
|
|
|
int Val = MI->getOperand(2).getImmedValue();
|
|
|
|
// If the value is the same when signed extended from 8 bits...
|
|
|
|
if (Val == (signed int)(signed char)Val) {
|
|
|
|
unsigned Opcode;
|
|
|
|
switch (MI->getOpcode()) {
|
|
|
|
default: assert(0 && "Unknown opcode value!");
|
|
|
|
case X86::ADDri16: Opcode = X86::ADDri16b; break;
|
|
|
|
case X86::ADDri32: Opcode = X86::ADDri32b; break;
|
|
|
|
case X86::SUBri16: Opcode = X86::SUBri16b; break;
|
|
|
|
case X86::SUBri32: Opcode = X86::SUBri32b; break;
|
|
|
|
case X86::IMULri16: Opcode = X86::IMULri16b; break;
|
|
|
|
case X86::IMULri32: Opcode = X86::IMULri32b; break;
|
|
|
|
case X86::ANDri16: Opcode = X86::ANDri16b; break;
|
|
|
|
case X86::ANDri32: Opcode = X86::ANDri32b; break;
|
|
|
|
case X86::ORri16: Opcode = X86::ORri16b; break;
|
|
|
|
case X86::ORri32: Opcode = X86::ORri32b; break;
|
|
|
|
case X86::XORri16: Opcode = X86::XORri16b; break;
|
|
|
|
case X86::XORri32: Opcode = X86::XORri32b; break;
|
|
|
|
}
|
|
|
|
unsigned R0 = MI->getOperand(0).getReg();
|
|
|
|
unsigned R1 = MI->getOperand(1).getReg();
|
|
|
|
*I = BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val);
|
|
|
|
delete MI;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
|
2003-01-13 01:01:59 +00:00
|
|
|
#if 0
|
|
|
|
case X86::MOVir32: Size++;
|
|
|
|
case X86::MOVir16: Size++;
|
|
|
|
case X86::MOVir8:
|
|
|
|
// FIXME: We can only do this transformation if we know that flags are not
|
|
|
|
// used here, because XOR clobbers the flags!
|
|
|
|
if (MI->getOperand(1).isImmediate()) { // avoid mov EAX, <value>
|
|
|
|
int Val = MI->getOperand(1).getImmedValue();
|
|
|
|
if (Val == 0) { // mov EAX, 0 -> xor EAX, EAX
|
|
|
|
static const unsigned Opcode[] ={X86::XORrr8,X86::XORrr16,X86::XORrr32};
|
|
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
|
|
*I = BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg);
|
|
|
|
delete MI;
|
|
|
|
return true;
|
|
|
|
} else if (Val == -1) { // mov EAX, -1 -> or EAX, -1
|
|
|
|
// TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
#endif
|
|
|
|
case X86::BSWAPr32: // Change bswap EAX, bswap EAX into nothing
|
|
|
|
if (Next->getOpcode() == X86::BSWAPr32 &&
|
|
|
|
MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
|
|
|
|
I = MBB.erase(MBB.erase(I));
|
|
|
|
delete MI;
|
|
|
|
delete Next;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
default:
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
2003-11-11 22:41:34 +00:00
|
|
|
|
2003-12-01 05:15:28 +00:00
|
|
|
namespace {
|
|
|
|
class UseDefChains : public MachineFunctionPass {
|
|
|
|
std::vector<MachineInstr*> DefiningInst;
|
|
|
|
public:
|
|
|
|
// getDefinition - Return the machine instruction that defines the specified
|
|
|
|
// SSA virtual register.
|
|
|
|
MachineInstr *getDefinition(unsigned Reg) {
|
|
|
|
assert(Reg >= MRegisterInfo::FirstVirtualRegister &&
|
|
|
|
"use-def chains only exist for SSA registers!");
|
|
|
|
assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
|
|
|
|
"Unknown register number!");
|
|
|
|
assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
|
|
|
|
"Unknown register number!");
|
|
|
|
return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
|
|
|
|
}
|
|
|
|
|
|
|
|
// setDefinition - Update the use-def chains to indicate that MI defines
|
|
|
|
// register Reg.
|
|
|
|
void setDefinition(unsigned Reg, MachineInstr *MI) {
|
|
|
|
if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
|
|
|
|
DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
|
|
|
|
DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
|
|
|
|
}
|
|
|
|
|
|
|
|
// removeDefinition - Update the use-def chains to forget about Reg
|
|
|
|
// entirely.
|
|
|
|
void removeDefinition(unsigned Reg) {
|
|
|
|
assert(getDefinition(Reg)); // Check validity
|
|
|
|
DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF) {
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
|
|
|
|
for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
|
|
|
|
MachineInstr *MI = *I;
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
|
|
MachineOperand &MO = MI->getOperand(i);
|
2003-12-14 13:24:17 +00:00
|
|
|
if (MO.isVirtualRegister() && MO.isDef() && !MO.isUse())
|
2003-12-01 05:15:28 +00:00
|
|
|
setDefinition(MO.getReg(), MI);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.setPreservesAll();
|
|
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void releaseMemory() {
|
|
|
|
std::vector<MachineInstr*>().swap(DefiningInst);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
RegisterAnalysis<UseDefChains> X("use-def-chains",
|
|
|
|
"use-def chain construction for machine code");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
Statistic<> NumSSAPHOpts("x86-ssa-peephole",
|
|
|
|
"Number of SSA peephole optimization performed");
|
|
|
|
|
|
|
|
/// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer. This
|
|
|
|
/// pass is really a bad idea: a better instruction selector should completely
|
|
|
|
/// supersume it. However, that will take some time to develop, and the
|
|
|
|
/// simple things this can do are important now.
|
|
|
|
class SSAPH : public MachineFunctionPass {
|
|
|
|
UseDefChains *UDC;
|
|
|
|
public:
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
|
|
|
|
bool PeepholeOptimize(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator &I);
|
|
|
|
|
|
|
|
virtual const char *getPassName() const {
|
|
|
|
return "X86 SSA-based Peephole Optimizer";
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
|
|
|
|
/// opcode of the instruction, then return true.
|
|
|
|
bool Propagate(MachineInstr *MI, unsigned DestOpNo,
|
|
|
|
MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
|
|
|
|
MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
|
|
|
|
if (NewOpcode) MI->setOpcode(NewOpcode);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// OptimizeAddress - If we can fold the addressing arithmetic for this
|
|
|
|
/// memory instruction into the instruction itself, do so and return true.
|
|
|
|
bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
|
|
|
|
|
|
|
|
/// getDefininingInst - If the specified operand is a read of an SSA
|
|
|
|
/// register, return the machine instruction defining it, otherwise, return
|
|
|
|
/// null.
|
|
|
|
MachineInstr *getDefiningInst(MachineOperand &MO) {
|
2003-12-14 13:24:17 +00:00
|
|
|
if (MO.isDef() || !MO.isVirtualRegister()) return 0;
|
2003-12-01 05:15:28 +00:00
|
|
|
return UDC->getDefinition(MO.getReg());
|
|
|
|
}
|
|
|
|
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.addRequired<UseDefChains>();
|
|
|
|
AU.addPreserved<UseDefChains>();
|
|
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
|
|
|
|
|
|
|
|
bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
|
|
|
|
bool Changed = false;
|
|
|
|
bool LocalChanged;
|
|
|
|
|
|
|
|
UDC = &getAnalysis<UseDefChains>();
|
|
|
|
|
|
|
|
do {
|
|
|
|
LocalChanged = false;
|
|
|
|
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
|
|
|
|
for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
|
|
|
|
if (PeepholeOptimize(*BI, I)) {
|
|
|
|
LocalChanged = true;
|
|
|
|
++NumSSAPHOpts;
|
|
|
|
} else
|
|
|
|
++I;
|
|
|
|
Changed |= LocalChanged;
|
|
|
|
} while (LocalChanged);
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool isValidScaleAmount(unsigned Scale) {
|
|
|
|
return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// OptimizeAddress - If we can fold the addressing arithmetic for this
|
|
|
|
/// memory instruction into the instruction itself, do so and return true.
|
|
|
|
bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
|
|
|
|
MachineOperand &BaseRegOp = MI->getOperand(OpNo+0);
|
|
|
|
MachineOperand &ScaleOp = MI->getOperand(OpNo+1);
|
|
|
|
MachineOperand &IndexRegOp = MI->getOperand(OpNo+2);
|
|
|
|
MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
|
|
|
|
|
|
|
|
unsigned BaseReg = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
|
|
|
|
unsigned Scale = ScaleOp.getImmedValue();
|
|
|
|
unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
|
|
|
|
|
|
|
|
bool Changed = false;
|
|
|
|
|
|
|
|
// If the base register is unset, and the index register is set with a scale
|
|
|
|
// of 1, move it to be the base register.
|
|
|
|
if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
|
|
|
|
Scale == 1 && IndexReg != 0) {
|
|
|
|
BaseRegOp.setReg(IndexReg);
|
|
|
|
IndexRegOp.setReg(0);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Attempt to fold instructions used by the base register into the instruction
|
|
|
|
if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
|
|
|
|
switch (DefInst->getOpcode()) {
|
|
|
|
case X86::MOVir32:
|
|
|
|
// If there is no displacement set for this instruction set one now.
|
|
|
|
// FIXME: If we can fold two immediates together, we should do so!
|
|
|
|
if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
|
|
|
|
if (DefInst->getOperand(1).isImmediate()) {
|
|
|
|
BaseRegOp.setReg(0);
|
|
|
|
return Propagate(MI, OpNo+3, DefInst, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case X86::ADDrr32:
|
|
|
|
// If the source is a register-register add, and we do not yet have an
|
|
|
|
// index register, fold the add into the memory address.
|
|
|
|
if (IndexReg == 0) {
|
|
|
|
BaseRegOp = DefInst->getOperand(1);
|
|
|
|
IndexRegOp = DefInst->getOperand(2);
|
|
|
|
ScaleOp.setImmedValue(1);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case X86::SHLir32:
|
|
|
|
// If this shift could be folded into the index portion of the address if
|
|
|
|
// it were the index register, move it to the index register operand now,
|
|
|
|
// so it will be folded in below.
|
|
|
|
if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
|
|
|
|
DefInst->getOperand(2).getImmedValue() < 4) {
|
|
|
|
std::swap(BaseRegOp, IndexRegOp);
|
|
|
|
ScaleOp.setImmedValue(1); Scale = 1;
|
|
|
|
std::swap(IndexReg, BaseReg);
|
|
|
|
Changed = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Attempt to fold instructions used by the index into the instruction
|
|
|
|
if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
|
|
|
|
switch (DefInst->getOpcode()) {
|
|
|
|
case X86::SHLir32: {
|
|
|
|
// Figure out what the resulting scale would be if we folded this shift.
|
|
|
|
unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
|
|
|
|
if (isValidScaleAmount(ResScale)) {
|
|
|
|
IndexRegOp = DefInst->getOperand(1);
|
|
|
|
ScaleOp.setImmedValue(ResScale);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
|
|
|
|
MachineBasicBlock::iterator &I) {
|
|
|
|
MachineInstr *MI = *I;
|
|
|
|
MachineInstr *Next = (I+1 != MBB.end()) ? *(I+1) : 0;
|
|
|
|
|
|
|
|
bool Changed = false;
|
|
|
|
|
|
|
|
// Scan the operands of this instruction. If any operands are
|
|
|
|
// register-register copies, replace the operand with the source.
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
|
|
|
|
// Is this an SSA register use?
|
|
|
|
if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i)))
|
|
|
|
// If the operand is a vreg-vreg copy, it is always safe to replace the
|
|
|
|
// source value with the input operand.
|
|
|
|
if (DefInst->getOpcode() == X86::MOVrr8 ||
|
|
|
|
DefInst->getOpcode() == X86::MOVrr16 ||
|
|
|
|
DefInst->getOpcode() == X86::MOVrr32) {
|
|
|
|
// Don't propagate physical registers into PHI nodes...
|
|
|
|
if (MI->getOpcode() != X86::PHI ||
|
|
|
|
DefInst->getOperand(1).isVirtualRegister())
|
|
|
|
Changed = Propagate(MI, i, DefInst, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Perform instruction specific optimizations.
|
|
|
|
switch (MI->getOpcode()) {
|
|
|
|
|
|
|
|
// Register to memory stores. Format: <base,scale,indexreg,immdisp>, srcreg
|
|
|
|
case X86::MOVrm32: case X86::MOVrm16: case X86::MOVrm8:
|
|
|
|
case X86::MOVim32: case X86::MOVim16: case X86::MOVim8:
|
|
|
|
// Check to see if we can fold the source instruction into this one...
|
|
|
|
if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
|
|
|
|
switch (SrcInst->getOpcode()) {
|
|
|
|
// Fold the immediate value into the store, if possible.
|
|
|
|
case X86::MOVir8: return Propagate(MI, 4, SrcInst, 1, X86::MOVim8);
|
|
|
|
case X86::MOVir16: return Propagate(MI, 4, SrcInst, 1, X86::MOVim16);
|
|
|
|
case X86::MOVir32: return Propagate(MI, 4, SrcInst, 1, X86::MOVim32);
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we can optimize the addressing expression, do so now.
|
|
|
|
if (OptimizeAddress(MI, 0))
|
|
|
|
return true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
case X86::MOVmr32:
|
|
|
|
case X86::MOVmr16:
|
|
|
|
case X86::MOVmr8:
|
|
|
|
// If we can optimize the addressing expression, do so now.
|
|
|
|
if (OptimizeAddress(MI, 1))
|
|
|
|
return true;
|
|
|
|
break;
|
|
|
|
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
|
|
|
|
return Changed;
|
|
|
|
}
|