1072 lines
40 KiB
C
Raw Normal View History

//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG. Note that natural
// loops may actually be several loops that share the same header node.
//
// This analysis calculates the nesting structure of loops in a function. For
// each natural loop identified, this analysis identifies natural loops
// contained entirely within the loop and the basic blocks the make up the loop.
//
// It can calculate on the fly various bits of information, for example:
//
// * whether there is a preheader for the loop
// * the number of back edges to the header
// * whether or not a particular block branches out of the loop
// * the successor blocks of the loop
// * the loop depth
// * the trip count
// * etc...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_LOOP_INFO_H
#define LLVM_ANALYSIS_LOOP_INFO_H
#include "llvm/Pass.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
#include <ostream>
namespace llvm {
template<typename T>
static void RemoveFromVector(std::vector<T*> &V, T *N) {
typename std::vector<T*>::iterator I = std::find(V.begin(), V.end(), N);
assert(I != V.end() && "N is not in this list!");
V.erase(I);
}
class DominatorTree;
class LoopInfo;
class PHINode;
class Instruction;
template<class N> class LoopInfoBase;
template<class N> class LoopBase;
typedef LoopBase<BasicBlock> Loop;
//===----------------------------------------------------------------------===//
/// LoopBase class - Instances of this class are used to represent loops that
/// are detected in the flow graph
///
template<class BlockT>
class LoopBase {
LoopBase<BlockT> *ParentLoop;
// SubLoops - Loops contained entirely within this one.
std::vector<LoopBase<BlockT>*> SubLoops;
// Blocks - The list of blocks in this loop. First entry is the header node.
std::vector<BlockT*> Blocks;
LoopBase(const LoopBase<BlockT> &); // DO NOT IMPLEMENT
const LoopBase<BlockT>&operator=(const LoopBase<BlockT> &);// DO NOT IMPLEMENT
public:
/// Loop ctor - This creates an empty loop.
LoopBase() : ParentLoop(0) {}
~LoopBase() {
for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
delete SubLoops[i];
}
/// getLoopDepth - Return the nesting level of this loop. An outer-most
/// loop has depth 1, for consistency with loop depth values used for basic
/// blocks, where depth 0 is used for blocks not inside any loops.
unsigned getLoopDepth() const {
unsigned D = 1;
for (const LoopBase<BlockT> *CurLoop = ParentLoop; CurLoop;
CurLoop = CurLoop->ParentLoop)
++D;
return D;
}
BlockT *getHeader() const { return Blocks.front(); }
LoopBase<BlockT> *getParentLoop() const { return ParentLoop; }
/// contains - Return true if the specified basic block is in this loop
///
bool contains(const BlockT *BB) const {
return std::find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
}
/// iterator/begin/end - Return the loops contained entirely within this loop.
///
const std::vector<LoopBase<BlockT>*> &getSubLoops() const { return SubLoops; }
typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
iterator begin() const { return SubLoops.begin(); }
iterator end() const { return SubLoops.end(); }
bool empty() const { return SubLoops.empty(); }
/// getBlocks - Get a list of the basic blocks which make up this loop.
///
const std::vector<BlockT*> &getBlocks() const { return Blocks; }
typedef typename std::vector<BlockT*>::const_iterator block_iterator;
block_iterator block_begin() const { return Blocks.begin(); }
block_iterator block_end() const { return Blocks.end(); }
/// isLoopExit - True if terminator in the block can branch to another block
/// that is outside of the current loop.
///
bool isLoopExit(const BlockT *BB) const {
typedef GraphTraits<BlockT*> BlockTraits;
for (typename BlockTraits::ChildIteratorType SI =
BlockTraits::child_begin(const_cast<BlockT*>(BB)),
SE = BlockTraits::child_end(const_cast<BlockT*>(BB)); SI != SE; ++SI) {
if (!contains(*SI))
return true;
}
return false;
}
/// getNumBackEdges - Calculate the number of back edges to the loop header
///
unsigned getNumBackEdges() const {
unsigned NumBackEdges = 0;
BlockT *H = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType I =
InvBlockTraits::child_begin(const_cast<BlockT*>(H)),
E = InvBlockTraits::child_end(const_cast<BlockT*>(H)); I != E; ++I)
if (contains(*I))
++NumBackEdges;
return NumBackEdges;
}
/// isLoopInvariant - Return true if the specified value is loop invariant
///
inline bool isLoopInvariant(Value *V) const {
if (Instruction *I = dyn_cast<Instruction>(V))
return !contains(I->getParent());
return true; // All non-instructions are loop invariant
}
//===--------------------------------------------------------------------===//
// APIs for simple analysis of the loop.
//
// Note that all of these methods can fail on general loops (ie, there may not
// be a preheader, etc). For best success, the loop simplification and
// induction variable canonicalization pass should be used to normalize loops
// for easy analysis. These methods assume canonical loops.
/// getExitingBlocks - Return all blocks inside the loop that have successors
/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
std::sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits;
for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
BE = Blocks.end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
// Not in current loop? It must be an exit block.
ExitingBlocks.push_back(*BI);
break;
}
}
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
std::sort(LoopBBs.begin(), LoopBBs.end());
typedef GraphTraits<BlockT*> BlockTraits;
for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
BE = Blocks.end(); BI != BE; ++BI)
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I)
if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
// Not in current loop? It must be an exit block.
ExitBlocks.push_back(*I);
}
/// getUniqueExitBlocks - Return all unique successor blocks of this loop.
/// These are the blocks _outside of the current loop_ which are branched to.
/// This assumes that loop is in canonical form.
///
void getUniqueExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
std::sort(LoopBBs.begin(), LoopBBs.end());
std::vector<BlockT*> switchExitBlocks;
for (typename std::vector<BlockT*>::const_iterator BI = Blocks.begin(),
BE = Blocks.end(); BI != BE; ++BI) {
BlockT *current = *BI;
switchExitBlocks.clear();
typedef GraphTraits<BlockT*> BlockTraits;
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename BlockTraits::ChildIteratorType I =
BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
I != E; ++I) {
if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
// If block is inside the loop then it is not a exit block.
continue;
typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(*I);
BlockT *firstPred = *PI;
// If current basic block is this exit block's first predecessor
// then only insert exit block in to the output ExitBlocks vector.
// This ensures that same exit block is not inserted twice into
// ExitBlocks vector.
if (current != firstPred)
continue;
// If a terminator has more then two successors, for example SwitchInst,
// then it is possible that there are multiple edges from current block
// to one exit block.
if (std::distance(BlockTraits::child_begin(current),
BlockTraits::child_end(current)) <= 2) {
ExitBlocks.push_back(*I);
continue;
}
// In case of multiple edges from current block to exit block, collect
// only one edge in ExitBlocks. Use switchExitBlocks to keep track of
// duplicate edges.
if (std::find(switchExitBlocks.begin(), switchExitBlocks.end(), *I)
== switchExitBlocks.end()) {
switchExitBlocks.push_back(*I);
ExitBlocks.push_back(*I);
}
}
}
}
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
/// from outside of the loop. If this is the case, the block branching to the
/// header of the loop is the preheader node.
///
/// This method returns null if there is no preheader for the loop.
///
BlockT *getLoopPreheader() const {
// Keep track of nodes outside the loop branching to the header...
BlockT *Out = 0;
// Loop over the predecessors of the header node...
BlockT *Header = getHeader();
typedef GraphTraits<BlockT*> BlockTraits;
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header),
PE = InvBlockTraits::child_end(Header); PI != PE; ++PI)
if (!contains(*PI)) { // If the block is not in the loop...
if (Out && Out != *PI)
return 0; // Multiple predecessors outside the loop
Out = *PI;
}
// Make sure there is only one exit out of the preheader.
assert(Out && "Header of loop has no predecessors from outside loop?");
typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
++SI;
if (SI != BlockTraits::child_end(Out))
return 0; // Multiple exits from the block, must not be a preheader.
// If there is exactly one preheader, return it. If there was zero, then
// Out is still null.
return Out;
}
/// getLoopLatch - If there is a latch block for this loop, return it. A
/// latch block is the canonical backedge for a loop. A loop header in normal
/// form has two edges into it: one from a preheader and one from a latch
/// block.
BlockT *getLoopLatch() const {
BlockT *Header = getHeader();
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(Header);
typename InvBlockTraits::ChildIteratorType PE =
InvBlockTraits::child_end(Header);
if (PI == PE) return 0; // no preds?
BlockT *Latch = 0;
if (contains(*PI))
Latch = *PI;
++PI;
if (PI == PE) return 0; // only one pred?
if (contains(*PI)) {
if (Latch) return 0; // multiple backedges
Latch = *PI;
}
++PI;
if (PI != PE) return 0; // more than two preds
return Latch;
}
/// getCanonicalInductionVariable - Check to see if the loop has a canonical
/// induction variable: an integer recurrence that starts at 0 and increments
/// by one each time through the loop. If so, return the phi node that
/// corresponds to it.
///
inline PHINode *getCanonicalInductionVariable() const {
BlockT *H = getHeader();
BlockT *Incoming = 0, *Backedge = 0;
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(H);
assert(PI != InvBlockTraits::child_end(H) &&
"Loop must have at least one backedge!");
Backedge = *PI++;
if (PI == InvBlockTraits::child_end(H)) return 0; // dead loop
Incoming = *PI++;
if (PI != InvBlockTraits::child_end(H)) return 0; // multiple backedges?
if (contains(Incoming)) {
if (contains(Backedge))
return 0;
std::swap(Incoming, Backedge);
} else if (!contains(Backedge))
return 0;
// Loop over all of the PHI nodes, looking for a canonical indvar.
for (typename BlockT::iterator I = H->begin(); isa<PHINode>(I); ++I) {
PHINode *PN = cast<PHINode>(I);
if (ConstantInt *CI =
dyn_cast<ConstantInt>(PN->getIncomingValueForBlock(Incoming)))
if (CI->isNullValue())
if (Instruction *Inc =
dyn_cast<Instruction>(PN->getIncomingValueForBlock(Backedge)))
if (Inc->getOpcode() == Instruction::Add &&
Inc->getOperand(0) == PN)
if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
if (CI->equalsInt(1))
return PN;
}
return 0;
}
/// getCanonicalInductionVariableIncrement - Return the LLVM value that holds
/// the canonical induction variable value for the "next" iteration of the
/// loop. This always succeeds if getCanonicalInductionVariable succeeds.
///
inline Instruction *getCanonicalInductionVariableIncrement() const {
if (PHINode *PN = getCanonicalInductionVariable()) {
bool P1InLoop = contains(PN->getIncomingBlock(1));
return cast<Instruction>(PN->getIncomingValue(P1InLoop));
}
return 0;
}
/// getTripCount - Return a loop-invariant LLVM value indicating the number of
/// times the loop will be executed. Note that this means that the backedge
/// of the loop executes N-1 times. If the trip-count cannot be determined,
/// this returns null.
///
inline Value *getTripCount() const {
// Canonical loops will end with a 'cmp ne I, V', where I is the incremented
// canonical induction variable and V is the trip count of the loop.
Instruction *Inc = getCanonicalInductionVariableIncrement();
if (Inc == 0) return 0;
PHINode *IV = cast<PHINode>(Inc->getOperand(0));
BlockT *BackedgeBlock =
IV->getIncomingBlock(contains(IV->getIncomingBlock(1)));
if (BranchInst *BI = dyn_cast<BranchInst>(BackedgeBlock->getTerminator()))
if (BI->isConditional()) {
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
if (ICI->getOperand(0) == Inc) {
if (BI->getSuccessor(0) == getHeader()) {
if (ICI->getPredicate() == ICmpInst::ICMP_NE)
return ICI->getOperand(1);
} else if (ICI->getPredicate() == ICmpInst::ICMP_EQ) {
return ICI->getOperand(1);
}
}
}
}
return 0;
}
/// getSmallConstantTripCount - Returns the trip count of this loop as a
/// normal unsigned value, if possible. Returns 0 if the trip count is unknown
/// of not constant. Will also return 0 if the trip count is very large
/// (>= 2^32)
inline unsigned getSmallConstantTripCount() const {
Value* TripCount = this->getTripCount();
if (TripCount) {
if (ConstantInt *TripCountC = dyn_cast<ConstantInt>(TripCount)) {
// Guard against huge trip counts.
if (TripCountC->getValue().getActiveBits() <= 32) {
return (unsigned)TripCountC->getZExtValue();
}
}
}
return 0;
}
/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
/// trip count of this loop as a normal unsigned value, if possible. This
/// means that the actual trip count is always a multiple of the returned
/// value (don't forget the trip count could very well be zero as well!).
///
/// Returns 1 if the trip count is unknown or not guaranteed to be the
/// multiple of a constant (which is also the case if the trip count is simply
/// constant, use getSmallConstantTripCount for that case), Will also return 1
/// if the trip count is very large (>= 2^32).
inline unsigned getSmallConstantTripMultiple() const {
Value* TripCount = this->getTripCount();
// This will hold the ConstantInt result, if any
ConstantInt *Result = NULL;
if (TripCount) {
// See if the trip count is constant itself
Result = dyn_cast<ConstantInt>(TripCount);
// if not, see if it is a multiplication
if (!Result)
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TripCount)) {
switch (BO->getOpcode()) {
case BinaryOperator::Mul:
Result = dyn_cast<ConstantInt>(BO->getOperand(1));
break;
default:
break;
}
}
}
// Guard against huge trip counts.
if (Result && Result->getValue().getActiveBits() <= 32) {
return (unsigned)Result->getZExtValue();
} else {
return 1;
}
}
/// isLCSSAForm - Return true if the Loop is in LCSSA form
inline bool isLCSSAForm() const {
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallPtrSet<BlockT*, 16> LoopBBs(block_begin(), block_end());
for (block_iterator BI = block_begin(), E = block_end(); BI != E; ++BI) {
BlockT *BB = *BI;
for (typename BlockT::iterator I = BB->begin(), E = BB->end(); I != E;++I)
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
++UI) {
BlockT *UserBB = cast<Instruction>(*UI)->getParent();
if (PHINode *P = dyn_cast<PHINode>(*UI)) {
unsigned OperandNo = UI.getOperandNo();
UserBB = P->getIncomingBlock(OperandNo/2);
}
// Check the current block, as a fast-path. Most values are used in
// the same block they are defined in.
if (UserBB != BB && !LoopBBs.count(UserBB))
return false;
}
}
return true;
}
//===--------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
//
/// addBasicBlockToLoop - This method is used by other analyses to update loop
/// information. NewBB is set to be a new member of the current loop.
/// Because of this, it is added as a member of all parent loops, and is added
/// to the specified LoopInfo object as being in the current basic block. It
/// is not valid to replace the loop header with this method.
///
void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT> &LI);
/// replaceChildLoopWith - This is used when splitting loops up. It replaces
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
void replaceChildLoopWith(LoopBase<BlockT> *OldChild,
LoopBase<BlockT> *NewChild) {
assert(OldChild->ParentLoop == this && "This loop is already broken!");
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
typename std::vector<LoopBase<BlockT>*>::iterator I =
std::find(SubLoops.begin(), SubLoops.end(), OldChild);
assert(I != SubLoops.end() && "OldChild not in loop!");
*I = NewChild;
OldChild->ParentLoop = 0;
NewChild->ParentLoop = this;
}
/// addChildLoop - Add the specified loop to be a child of this loop. This
/// updates the loop depth of the new child.
///
void addChildLoop(LoopBase<BlockT> *NewChild) {
assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
NewChild->ParentLoop = this;
SubLoops.push_back(NewChild);
}
/// removeChildLoop - This removes the specified child from being a subloop of
/// this loop. The loop is not deleted, as it will presumably be inserted
/// into another loop.
LoopBase<BlockT> *removeChildLoop(iterator I) {
assert(I != SubLoops.end() && "Cannot remove end iterator!");
LoopBase<BlockT> *Child = *I;
assert(Child->ParentLoop == this && "Child is not a child of this loop!");
SubLoops.erase(SubLoops.begin()+(I-begin()));
Child->ParentLoop = 0;
return Child;
}
/// addBlockEntry - This adds a basic block directly to the basic block list.
/// This should only be used by transformations that create new loops. Other
/// transformations should use addBasicBlockToLoop.
void addBlockEntry(BlockT *BB) {
Blocks.push_back(BB);
}
/// moveToHeader - This method is used to move BB (which must be part of this
/// loop) to be the loop header of the loop (the block that dominates all
/// others).
void moveToHeader(BlockT *BB) {
if (Blocks[0] == BB) return;
for (unsigned i = 0; ; ++i) {
assert(i != Blocks.size() && "Loop does not contain BB!");
if (Blocks[i] == BB) {
Blocks[i] = Blocks[0];
Blocks[0] = BB;
return;
}
}
}
/// removeBlockFromLoop - This removes the specified basic block from the
/// current loop, updating the Blocks as appropriate. This does not update
/// the mapping in the LoopInfo class.
void removeBlockFromLoop(BlockT *BB) {
RemoveFromVector(Blocks, BB);
}
/// verifyLoop - Verify loop structure
void verifyLoop() const {
#ifndef NDEBUG
assert (getHeader() && "Loop header is missing");
assert (getLoopPreheader() && "Loop preheader is missing");
assert (getLoopLatch() && "Loop latch is missing");
for (typename std::vector<LoopBase<BlockT>*>::const_iterator I =
SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
(*I)->verifyLoop();
#endif
}
void print(std::ostream &OS, unsigned Depth = 0) const {
OS << std::string(Depth*2, ' ') << "Loop Containing: ";
for (unsigned i = 0; i < getBlocks().size(); ++i) {
if (i) OS << ",";
WriteAsOperand(OS, getBlocks()[i], false);
}
OS << "\n";
for (iterator I = begin(), E = end(); I != E; ++I)
(*I)->print(OS, Depth+2);
}
void print(std::ostream *O, unsigned Depth = 0) const {
if (O) print(*O, Depth);
}
void dump() const {
print(cerr);
}
private:
friend class LoopInfoBase<BlockT>;
explicit LoopBase(BlockT *BB) : ParentLoop(0) {
Blocks.push_back(BB);
}
};
//===----------------------------------------------------------------------===//
/// LoopInfo - This class builds and contains all of the top level loop
/// structures in the specified function.
///
template<class BlockT>
class LoopInfoBase {
// BBMap - Mapping of basic blocks to the inner most loop they occur in
std::map<BlockT*, LoopBase<BlockT>*> BBMap;
std::vector<LoopBase<BlockT>*> TopLevelLoops;
friend class LoopBase<BlockT>;
public:
LoopInfoBase() { }
~LoopInfoBase() { releaseMemory(); }
void releaseMemory() {
for (typename std::vector<LoopBase<BlockT>* >::iterator I =
TopLevelLoops.begin(), E = TopLevelLoops.end(); I != E; ++I)
delete *I; // Delete all of the loops...
BBMap.clear(); // Reset internal state of analysis
TopLevelLoops.clear();
}
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef typename std::vector<LoopBase<BlockT>*>::const_iterator iterator;
iterator begin() const { return TopLevelLoops.begin(); }
iterator end() const { return TopLevelLoops.end(); }
bool empty() const { return TopLevelLoops.empty(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
LoopBase<BlockT> *getLoopFor(const BlockT *BB) const {
typename std::map<BlockT *, LoopBase<BlockT>*>::const_iterator I=
BBMap.find(const_cast<BlockT*>(BB));
return I != BBMap.end() ? I->second : 0;
}
/// operator[] - same as getLoopFor...
///
const LoopBase<BlockT> *operator[](const BlockT *BB) const {
return getLoopFor(BB);
}
/// getLoopDepth - Return the loop nesting level of the specified block. A
/// depth of 0 means the block is not inside any loop.
///
unsigned getLoopDepth(const BlockT *BB) const {
const LoopBase<BlockT> *L = getLoopFor(BB);
return L ? L->getLoopDepth() : 0;
}
// isLoopHeader - True if the block is a loop header node
bool isLoopHeader(BlockT *BB) const {
const LoopBase<BlockT> *L = getLoopFor(BB);
return L && L->getHeader() == BB;
}
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
LoopBase<BlockT> *removeLoop(iterator I) {
assert(I != end() && "Cannot remove end iterator!");
LoopBase<BlockT> *L = *I;
assert(L->getParentLoop() == 0 && "Not a top-level loop!");
TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
return L;
}
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
void changeLoopFor(BlockT *BB, LoopBase<BlockT> *L) {
LoopBase<BlockT> *&OldLoop = BBMap[BB];
assert(OldLoop && "Block not in a loop yet!");
OldLoop = L;
}
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
void changeTopLevelLoop(LoopBase<BlockT> *OldLoop,
LoopBase<BlockT> *NewLoop) {
typename std::vector<LoopBase<BlockT>*>::iterator I =
std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop);
assert(I != TopLevelLoops.end() && "Old loop not at top level!");
*I = NewLoop;
assert(NewLoop->ParentLoop == 0 && OldLoop->ParentLoop == 0 &&
"Loops already embedded into a subloop!");
}
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
void addTopLevelLoop(LoopBase<BlockT> *New) {
assert(New->getParentLoop() == 0 && "Loop already in subloop!");
TopLevelLoops.push_back(New);
}
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BlockT *BB) {
typename std::map<BlockT *, LoopBase<BlockT>*>::iterator I = BBMap.find(BB);
if (I != BBMap.end()) {
for (LoopBase<BlockT> *L = I->second; L; L = L->getParentLoop())
L->removeBlockFromLoop(BB);
BBMap.erase(I);
}
}
// Internals
static bool isNotAlreadyContainedIn(LoopBase<BlockT> *SubLoop,
LoopBase<BlockT> *ParentLoop) {
if (SubLoop == 0) return true;
if (SubLoop == ParentLoop) return false;
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
}
void Calculate(DominatorTreeBase<BlockT> &DT) {
BlockT *RootNode = DT.getRootNode()->getBlock();
for (df_iterator<BlockT*> NI = df_begin(RootNode),
NE = df_end(RootNode); NI != NE; ++NI)
if (LoopBase<BlockT> *L = ConsiderForLoop(*NI, DT))
TopLevelLoops.push_back(L);
}
LoopBase<BlockT> *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
if (BBMap.find(BB) != BBMap.end()) return 0;// Haven't processed this node?
std::vector<BlockT *> TodoStack;
// Scan the predecessors of BB, checking to see if BB dominates any of
// them. This identifies backedges which target this node...
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType I =
InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
I != E; ++I)
if (DT.dominates(BB, *I)) // If BB dominates it's predecessor...
TodoStack.push_back(*I);
if (TodoStack.empty()) return 0; // No backedges to this block...
// Create a new loop to represent this basic block...
LoopBase<BlockT> *L = new LoopBase<BlockT>(BB);
BBMap[BB] = L;
BlockT *EntryBlock = BB->getParent()->begin();
while (!TodoStack.empty()) { // Process all the nodes in the loop
BlockT *X = TodoStack.back();
TodoStack.pop_back();
if (!L->contains(X) && // As of yet unprocessed??
DT.dominates(EntryBlock, X)) { // X is reachable from entry block?
// Check to see if this block already belongs to a loop. If this occurs
// then we have a case where a loop that is supposed to be a child of
// the current loop was processed before the current loop. When this
// occurs, this child loop gets added to a part of the current loop,
// making it a sibling to the current loop. We have to reparent this
// loop.
if (LoopBase<BlockT> *SubLoop =
const_cast<LoopBase<BlockT>*>(getLoopFor(X)))
if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
// Remove the subloop from it's current parent...
assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
LoopBase<BlockT> *SLP = SubLoop->ParentLoop; // SubLoopParent
typename std::vector<LoopBase<BlockT>*>::iterator I =
std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
SLP->SubLoops.erase(I); // Remove from parent...
// Add the subloop to THIS loop...
SubLoop->ParentLoop = L;
L->SubLoops.push_back(SubLoop);
}
// Normal case, add the block to our loop...
L->Blocks.push_back(X);
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
// Add all of the predecessors of X to the end of the work stack...
TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
InvBlockTraits::child_end(X));
}
}
// If there are any loops nested within this loop, create them now!
for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I)
if (LoopBase<BlockT> *NewLoop = ConsiderForLoop(*I, DT)) {
L->SubLoops.push_back(NewLoop);
NewLoop->ParentLoop = L;
}
// Add the basic blocks that comprise this loop to the BBMap so that this
// loop can be found for them.
//
for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
E = L->Blocks.end(); I != E; ++I) {
typename std::map<BlockT*, LoopBase<BlockT>*>::iterator BBMI =
BBMap.find(*I);
if (BBMI == BBMap.end()) // Not in map yet...
BBMap.insert(BBMI, std::make_pair(*I, L)); // Must be at this level
}
// Now that we have a list of all of the child loops of this loop, check to
// see if any of them should actually be nested inside of each other. We
// can accidentally pull loops our of their parents, so we must make sure to
// organize the loop nests correctly now.
{
std::map<BlockT*, LoopBase<BlockT>*> ContainingLoops;
for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
LoopBase<BlockT> *Child = L->SubLoops[i];
assert(Child->getParentLoop() == L && "Not proper child loop?");
if (LoopBase<BlockT> *ContainingLoop =
ContainingLoops[Child->getHeader()]) {
// If there is already a loop which contains this loop, move this loop
// into the containing loop.
MoveSiblingLoopInto(Child, ContainingLoop);
--i; // The loop got removed from the SubLoops list.
} else {
// This is currently considered to be a top-level loop. Check to see
// if any of the contained blocks are loop headers for subloops we
// have already processed.
for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
LoopBase<BlockT> *&BlockLoop = ContainingLoops[Child->Blocks[b]];
if (BlockLoop == 0) { // Child block not processed yet...
BlockLoop = Child;
} else if (BlockLoop != Child) {
LoopBase<BlockT> *SubLoop = BlockLoop;
// Reparent all of the blocks which used to belong to BlockLoops
for (unsigned j = 0, e = SubLoop->Blocks.size(); j != e; ++j)
ContainingLoops[SubLoop->Blocks[j]] = Child;
// There is already a loop which contains this block, that means
// that we should reparent the loop which the block is currently
// considered to belong to to be a child of this loop.
MoveSiblingLoopInto(SubLoop, Child);
--i; // We just shrunk the SubLoops list.
}
}
}
}
}
return L;
}
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
/// of the NewParent Loop, instead of being a sibling of it.
void MoveSiblingLoopInto(LoopBase<BlockT> *NewChild,
LoopBase<BlockT> *NewParent) {
LoopBase<BlockT> *OldParent = NewChild->getParentLoop();
assert(OldParent && OldParent == NewParent->getParentLoop() &&
NewChild != NewParent && "Not sibling loops!");
// Remove NewChild from being a child of OldParent
typename std::vector<LoopBase<BlockT>*>::iterator I =
std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
NewChild);
assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
OldParent->SubLoops.erase(I); // Remove from parent's subloops list
NewChild->ParentLoop = 0;
InsertLoopInto(NewChild, NewParent);
}
/// InsertLoopInto - This inserts loop L into the specified parent loop. If
/// the parent loop contains a loop which should contain L, the loop gets
/// inserted into L instead.
void InsertLoopInto(LoopBase<BlockT> *L, LoopBase<BlockT> *Parent) {
BlockT *LHeader = L->getHeader();
assert(Parent->contains(LHeader) &&
"This loop should not be inserted here!");
// Check to see if it belongs in a child loop...
for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
i != e; ++i)
if (Parent->SubLoops[i]->contains(LHeader)) {
InsertLoopInto(L, Parent->SubLoops[i]);
return;
}
// If not, insert it here!
Parent->SubLoops.push_back(L);
L->ParentLoop = Parent;
}
// Debugging
void print(std::ostream &OS, const Module* ) const {
for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
TopLevelLoops[i]->print(OS);
#if 0
for (std::map<BasicBlock*, Loop*>::const_iterator I = BBMap.begin(),
E = BBMap.end(); I != E; ++I)
OS << "BB '" << I->first->getName() << "' level = "
<< I->second->getLoopDepth() << "\n";
#endif
}
};
class LoopInfo : public FunctionPass {
LoopInfoBase<BasicBlock>* LI;
friend class LoopBase<BasicBlock>;
public:
static char ID; // Pass identification, replacement for typeid
LoopInfo() : FunctionPass(intptr_t(&ID)) {
LI = new LoopInfoBase<BasicBlock>();
}
~LoopInfo() { delete LI; }
LoopInfoBase<BasicBlock>& getBase() { return *LI; }
/// iterator/begin/end - The interface to the top-level loops in the current
/// function.
///
typedef std::vector<Loop*>::const_iterator iterator;
inline iterator begin() const { return LI->begin(); }
inline iterator end() const { return LI->end(); }
bool empty() const { return LI->empty(); }
/// getLoopFor - Return the inner most loop that BB lives in. If a basic
/// block is in no loop (for example the entry node), null is returned.
///
inline Loop *getLoopFor(const BasicBlock *BB) const {
return LI->getLoopFor(BB);
}
/// operator[] - same as getLoopFor...
///
inline const Loop *operator[](const BasicBlock *BB) const {
return LI->getLoopFor(BB);
}
/// getLoopDepth - Return the loop nesting level of the specified block. A
/// depth of 0 means the block is not inside any loop.
///
inline unsigned getLoopDepth(const BasicBlock *BB) const {
return LI->getLoopDepth(BB);
}
// isLoopHeader - True if the block is a loop header node
inline bool isLoopHeader(BasicBlock *BB) const {
return LI->isLoopHeader(BB);
}
/// runOnFunction - Calculate the natural loop information.
///
virtual bool runOnFunction(Function &F);
virtual void releaseMemory() { LI->releaseMemory(); }
virtual void print(std::ostream &O, const Module* M = 0) const {
if (O) LI->print(O, M);
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// removeLoop - This removes the specified top-level loop from this loop info
/// object. The loop is not deleted, as it will presumably be inserted into
/// another loop.
inline Loop *removeLoop(iterator I) { return LI->removeLoop(I); }
/// changeLoopFor - Change the top-level loop that contains BB to the
/// specified loop. This should be used by transformations that restructure
/// the loop hierarchy tree.
inline void changeLoopFor(BasicBlock *BB, Loop *L) {
LI->changeLoopFor(BB, L);
}
/// changeTopLevelLoop - Replace the specified loop in the top-level loops
/// list with the indicated loop.
inline void changeTopLevelLoop(Loop *OldLoop, Loop *NewLoop) {
LI->changeTopLevelLoop(OldLoop, NewLoop);
}
/// addTopLevelLoop - This adds the specified loop to the collection of
/// top-level loops.
inline void addTopLevelLoop(Loop *New) {
LI->addTopLevelLoop(New);
}
/// removeBlock - This method completely removes BB from all data structures,
/// including all of the Loop objects it is nested in and our mapping from
/// BasicBlocks to loops.
void removeBlock(BasicBlock *BB) {
LI->removeBlock(BB);
}
};
// Allow clients to walk the list of nested loops...
template <> struct GraphTraits<const Loop*> {
typedef const Loop NodeType;
typedef std::vector<Loop*>::const_iterator ChildIteratorType;
static NodeType *getEntryNode(const Loop *L) { return L; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->end();
}
};
template <> struct GraphTraits<Loop*> {
typedef Loop NodeType;
typedef std::vector<Loop*>::const_iterator ChildIteratorType;
static NodeType *getEntryNode(Loop *L) { return L; }
static inline ChildIteratorType child_begin(NodeType *N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType *N) {
return N->end();
}
};
template<class BlockT>
void LoopBase<BlockT>::addBasicBlockToLoop(BlockT *NewBB,
LoopInfoBase<BlockT> &LIB) {
assert((Blocks.empty() || LIB[getHeader()] == this) &&
"Incorrect LI specified for this loop!");
assert(NewBB && "Cannot add a null basic block to the loop!");
assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
// Add the loop mapping to the LoopInfo object...
LIB.BBMap[NewBB] = this;
// Add the basic block to this loop and all parent loops...
LoopBase<BlockT> *L = this;
while (L) {
L->Blocks.push_back(NewBB);
L = L->getParentLoop();
}
}
} // End llvm namespace
#endif