llvm-6502/lib/Target/Mips/Mips64InstrInfo.td

180 lines
7.1 KiB
TableGen
Raw Normal View History

//===- Mips64InstrInfo.td - Mips64 Instruction Information -*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes Mips64 instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Mips64 Instruction Predicate Definitions.
//===----------------------------------------------------------------------===//
def HasMips64 : Predicate<"Subtarget.hasMips64()">;
def HasMips64r2 : Predicate<"Subtarget.hasMips64r2()">;
//===----------------------------------------------------------------------===//
// Mips Operand, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//
// Instruction operand types
def simm16_64 : Operand<i64>;
def shamt_64 : Operand<i64>;
// Unsigned Operand
def uimm16_64 : Operand<i64> {
let PrintMethod = "printUnsignedImm";
}
// Transformation Function - get Imm - 32.
def Subtract32 : SDNodeXForm<imm, [{
return getI32Imm((unsigned)N->getZExtValue() - 32);
}]>;
// imm32_63 predicate - True if imm is in range [32, 63].
def imm32_63 : ImmLeaf<i64,
[{return (int32_t)Imm >= 32 && (int32_t)Imm < 64;}],
Subtract32>;
//===----------------------------------------------------------------------===//
// Instructions specific format
//===----------------------------------------------------------------------===//
// Arithmetic 3 register operands
class ArithR64<bits<6> op, bits<6> func, string instr_asm, SDNode OpNode,
InstrItinClass itin, bit isComm = 0>:
FR<op, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, CPU64Regs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], itin> {
let isCommutable = isComm;
}
// Arithmetic 2 register operands
class ArithI64<bits<6> op, string instr_asm, SDNode OpNode,
Operand Od, PatLeaf imm_type> :
FI<op, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, Od:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, imm_type:$c))], IIAlu>;
// Logical
let isCommutable = 1 in
class LogicR64<bits<6> func, string instr_asm, SDNode OpNode>:
FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, CPU64Regs:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], IIAlu>;
class LogicI64<bits<6> op, string instr_asm, SDNode OpNode>:
FI<op, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, uimm16_64:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, immZExt16:$c))], IIAlu>;
// Shifts
class LogicR_shift_rotate_imm64<bits<6> func, bits<5> _rs, string instr_asm,
SDNode OpNode, PatFrag PF>:
FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$b, shamt_64:$c),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, (i64 PF:$c)))],
IIAlu> {
let rs = _rs;
}
class LogicR_shift_rotate_reg64<bits<6> func, bits<5> _shamt, string instr_asm,
SDNode OpNode>:
FR<0x00, func, (outs CPU64Regs:$dst), (ins CPU64Regs:$c, CPU64Regs:$b),
!strconcat(instr_asm, "\t$dst, $b, $c"),
[(set CPU64Regs:$dst, (OpNode CPU64Regs:$b, CPU64Regs:$c))], IIAlu> {
let shamt = _shamt;
}
// Mul, Div
let Defs = [HI64, LO64] in {
let isCommutable = 1 in
class Mul64<bits<6> func, string instr_asm, InstrItinClass itin>:
FR<0x00, func, (outs), (ins CPU64Regs:$a, CPU64Regs:$b),
!strconcat(instr_asm, "\t$a, $b"), [], itin>;
class Div64<SDNode op, bits<6> func, string instr_asm, InstrItinClass itin>:
FR<0x00, func, (outs), (ins CPU64Regs:$a, CPU64Regs:$b),
!strconcat(instr_asm, "\t$$zero, $a, $b"),
[(op CPU64Regs:$a, CPU64Regs:$b)], itin>;
}
// Move from Hi/Lo
let shamt = 0 in {
let rs = 0, rt = 0 in
class MoveFromLOHI64<bits<6> func, string instr_asm>:
FR<0x00, func, (outs CPU64Regs:$dst), (ins),
!strconcat(instr_asm, "\t$dst"), [], IIHiLo>;
let rt = 0, rd = 0 in
class MoveToLOHI64<bits<6> func, string instr_asm>:
FR<0x00, func, (outs), (ins CPU64Regs:$src),
!strconcat(instr_asm, "\t$src"), [], IIHiLo>;
}
//===----------------------------------------------------------------------===//
// Instruction definition
//===----------------------------------------------------------------------===//
/// Arithmetic Instructions (ALU Immediate)
def DADDiu : ArithI64<0x19, "daddiu", add, simm16_64, immSExt16>;
def DANDi : LogicI64<0x0c, "andi", and>;
def DORi : LogicI64<0x0d, "ori", or>;
def DXORi : LogicI64<0x0e, "xori", xor>;
/// Arithmetic Instructions (3-Operand, R-Type)
def DADDu : ArithR64<0x00, 0x2d, "daddu", add, IIAlu, 1>;
def DSUBu : ArithR64<0x00, 0x2f, "dsubu", sub, IIAlu>;
def DAND : LogicR64<0x24, "and", and>;
def DOR : LogicR64<0x25, "or", or>;
def DXOR : LogicR64<0x26, "xor", xor>;
/// Shift Instructions
def DSLL : LogicR_shift_rotate_imm64<0x38, 0x00, "dsll", shl, immZExt5>;
def DSRL : LogicR_shift_rotate_imm64<0x3a, 0x00, "dsrl", srl, immZExt5>;
def DSRA : LogicR_shift_rotate_imm64<0x3b, 0x00, "dsra", sra, immZExt5>;
def DSLL32 : LogicR_shift_rotate_imm64<0x3c, 0x00, "dsll32", shl, imm32_63>;
def DSRL32 : LogicR_shift_rotate_imm64<0x3e, 0x00, "dsrl32", srl, imm32_63>;
def DSRA32 : LogicR_shift_rotate_imm64<0x3f, 0x00, "dsra32", sra, imm32_63>;
def DSLLV : LogicR_shift_rotate_reg64<0x24, 0x00, "dsllv", shl>;
def DSRLV : LogicR_shift_rotate_reg64<0x26, 0x00, "dsrlv", srl>;
def DSRAV : LogicR_shift_rotate_reg64<0x27, 0x00, "dsrav", sra>;
// Rotate Instructions
let Predicates = [HasMips64r2] in {
def DROTR : LogicR_shift_rotate_imm64<0x3a, 0x01, "drotr", rotr, immZExt5>;
def DROTR32 : LogicR_shift_rotate_imm64<0x3e, 0x01, "drotr32", rotr,
imm32_63>;
def DROTRV : LogicR_shift_rotate_reg64<0x16, 0x01, "drotrv", rotr>;
}
/// Multiply and Divide Instructions.
def DMULT : Mul64<0x1c, "dmult", IIImul>;
def DMULTu : Mul64<0x1d, "dmultu", IIImul>;
def DSDIV : Div64<MipsDivRem, 0x1e, "ddiv", IIIdiv>;
def DUDIV : Div64<MipsDivRemU, 0x1f, "ddivu", IIIdiv>;
let Defs = [HI64] in
def MTHI64 : MoveToLOHI64<0x11, "mthi">;
let Defs = [LO64] in
def MTLO64 : MoveToLOHI64<0x13, "mtlo">;
let Uses = [HI64] in
def MFHI64 : MoveFromLOHI64<0x10, "mfhi">;
let Uses = [LO64] in
def MFLO64 : MoveFromLOHI64<0x12, "mflo">;
//===----------------------------------------------------------------------===//
// Arbitrary patterns that map to one or more instructions
//===----------------------------------------------------------------------===//
// Small immediates
def : Pat<(i64 immSExt16:$in),
(DADDiu ZERO_64, imm:$in)>;
def : Pat<(i64 immZExt16:$in),
(DORi ZERO_64, imm:$in)>;