llvm-6502/lib/CodeGen/AsmPrinter/AsmPrinterDwarf.cpp

391 lines
14 KiB
C++
Raw Normal View History

//===-- AsmPrinterDwarf.cpp - AsmPrinter Dwarf Support --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Dwarf emissions parts of AsmPrinter.
//
//===----------------------------------------------------------------------===//
#include "ByteStreamer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MachineLocation.h"
#include "llvm/Support/Dwarf.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
//===----------------------------------------------------------------------===//
// Dwarf Emission Helper Routines
//===----------------------------------------------------------------------===//
/// EmitSLEB128 - emit the specified signed leb128 value.
void AsmPrinter::EmitSLEB128(int64_t Value, const char *Desc) const {
if (isVerbose() && Desc)
OutStreamer.AddComment(Desc);
OutStreamer.EmitSLEB128IntValue(Value);
}
/// EmitULEB128 - emit the specified signed leb128 value.
void AsmPrinter::EmitULEB128(uint64_t Value, const char *Desc,
unsigned PadTo) const {
if (isVerbose() && Desc)
OutStreamer.AddComment(Desc);
OutStreamer.EmitULEB128IntValue(Value, PadTo);
}
/// EmitCFAByte - Emit a .byte 42 directive for a DW_CFA_xxx value.
void AsmPrinter::EmitCFAByte(unsigned Val) const {
if (isVerbose()) {
if (Val >= dwarf::DW_CFA_offset && Val < dwarf::DW_CFA_offset + 64)
OutStreamer.AddComment("DW_CFA_offset + Reg (" +
Twine(Val - dwarf::DW_CFA_offset) + ")");
else
OutStreamer.AddComment(dwarf::CallFrameString(Val));
}
OutStreamer.EmitIntValue(Val, 1);
}
static const char *DecodeDWARFEncoding(unsigned Encoding) {
switch (Encoding) {
case dwarf::DW_EH_PE_absptr:
return "absptr";
case dwarf::DW_EH_PE_omit:
return "omit";
case dwarf::DW_EH_PE_pcrel:
return "pcrel";
case dwarf::DW_EH_PE_udata4:
return "udata4";
case dwarf::DW_EH_PE_udata8:
return "udata8";
case dwarf::DW_EH_PE_sdata4:
return "sdata4";
case dwarf::DW_EH_PE_sdata8:
return "sdata8";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4:
return "pcrel udata4";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4:
return "pcrel sdata4";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8:
return "pcrel udata8";
case dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8:
return "pcrel sdata8";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata4
:
return "indirect pcrel udata4";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
:
return "indirect pcrel sdata4";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8
:
return "indirect pcrel udata8";
case dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8
:
return "indirect pcrel sdata8";
}
return "<unknown encoding>";
}
/// EmitEncodingByte - Emit a .byte 42 directive that corresponds to an
/// encoding. If verbose assembly output is enabled, we output comments
/// describing the encoding. Desc is an optional string saying what the
/// encoding is specifying (e.g. "LSDA").
void AsmPrinter::EmitEncodingByte(unsigned Val, const char *Desc) const {
if (isVerbose()) {
if (Desc)
OutStreamer.AddComment(Twine(Desc) + " Encoding = " +
Twine(DecodeDWARFEncoding(Val)));
else
OutStreamer.AddComment(Twine("Encoding = ") + DecodeDWARFEncoding(Val));
}
OutStreamer.EmitIntValue(Val, 1);
}
/// GetSizeOfEncodedValue - Return the size of the encoding in bytes.
unsigned AsmPrinter::GetSizeOfEncodedValue(unsigned Encoding) const {
if (Encoding == dwarf::DW_EH_PE_omit)
return 0;
switch (Encoding & 0x07) {
default:
llvm_unreachable("Invalid encoded value.");
case dwarf::DW_EH_PE_absptr:
return TM.getDataLayout()->getPointerSize();
case dwarf::DW_EH_PE_udata2:
return 2;
case dwarf::DW_EH_PE_udata4:
return 4;
case dwarf::DW_EH_PE_udata8:
return 8;
}
}
void AsmPrinter::EmitTTypeReference(const GlobalValue *GV,
unsigned Encoding) const {
if (GV) {
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
const MCExpr *Exp =
TLOF.getTTypeGlobalReference(GV, Encoding, *Mang, TM, MMI, OutStreamer);
OutStreamer.EmitValue(Exp, GetSizeOfEncodedValue(Encoding));
} else
OutStreamer.EmitIntValue(0, GetSizeOfEncodedValue(Encoding));
}
/// EmitSectionOffset - Emit the 4-byte offset of Label from the start of its
/// section. This can be done with a special directive if the target supports
/// it (e.g. cygwin) or by emitting it as an offset from a label at the start
/// of the section.
///
/// SectionLabel is a temporary label emitted at the start of the section that
/// Label lives in.
void AsmPrinter::EmitSectionOffset(const MCSymbol *Label,
const MCSymbol *SectionLabel) const {
// On COFF targets, we have to emit the special .secrel32 directive.
if (MAI->needsDwarfSectionOffsetDirective()) {
OutStreamer.EmitCOFFSecRel32(Label);
return;
}
// Get the section that we're referring to, based on SectionLabel.
const MCSection &Section = SectionLabel->getSection();
// If Label has already been emitted, verify that it is in the same section as
// section label for sanity.
assert((!Label->isInSection() || &Label->getSection() == &Section) &&
"Section offset using wrong section base for label");
// If the section in question will end up with an address of 0 anyway, we can
// just emit an absolute reference to save a relocation.
if (Section.isBaseAddressKnownZero()) {
OutStreamer.EmitSymbolValue(Label, 4);
return;
}
// Otherwise, emit it as a label difference from the start of the section.
EmitLabelDifference(Label, SectionLabel, 4);
}
/// Emit a dwarf register operation.
static void emitDwarfRegOp(ByteStreamer &Streamer, int Reg) {
assert(Reg >= 0);
if (Reg < 32) {
Streamer.EmitInt8(dwarf::DW_OP_reg0 + Reg,
dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
} else {
Streamer.EmitInt8(dwarf::DW_OP_regx, "DW_OP_regx");
Streamer.EmitULEB128(Reg, Twine(Reg));
}
}
/// Emit an (double-)indirect dwarf register operation.
static void emitDwarfRegOpIndirect(ByteStreamer &Streamer, int Reg, int Offset,
bool Deref) {
assert(Reg >= 0);
if (Reg < 32) {
Streamer.EmitInt8(dwarf::DW_OP_breg0 + Reg,
dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
} else {
Streamer.EmitInt8(dwarf::DW_OP_bregx, "DW_OP_bregx");
Streamer.EmitULEB128(Reg, Twine(Reg));
}
Streamer.EmitSLEB128(Offset);
if (Deref)
Streamer.EmitInt8(dwarf::DW_OP_deref, "DW_OP_deref");
}
/// Emit a dwarf register operation for describing
/// - a small value occupying only part of a register or
/// - a small register representing only part of a value.
static void emitDwarfOpPiece(ByteStreamer &Streamer, unsigned SizeInBits,
unsigned OffsetInBits) {
assert(SizeInBits > 0 && "zero-sized piece");
unsigned SizeOfByte = 8;
if (OffsetInBits > 0 || SizeInBits % SizeOfByte) {
Streamer.EmitInt8(dwarf::DW_OP_bit_piece, "DW_OP_bit_piece");
Streamer.EmitULEB128(SizeInBits, Twine(SizeInBits));
Streamer.EmitULEB128(OffsetInBits, Twine(OffsetInBits));
} else {
Streamer.EmitInt8(dwarf::DW_OP_piece, "DW_OP_piece");
unsigned ByteSize = SizeInBits / SizeOfByte;
Streamer.EmitULEB128(ByteSize, Twine(ByteSize));
}
}
/// Emit a shift-right dwarf expression.
static void emitDwarfOpShr(ByteStreamer &Streamer,
unsigned ShiftBy) {
Streamer.EmitInt8(dwarf::DW_OP_constu, "DW_OP_constu");
Streamer.EmitULEB128(ShiftBy);
Streamer.EmitInt8(dwarf::DW_OP_shr, "DW_OP_shr");
}
// Some targets do not provide a DWARF register number for every
// register. This function attempts to emit a DWARF register by
// emitting a piece of a super-register or by piecing together
// multiple subregisters that alias the register.
void AsmPrinter::EmitDwarfRegOpPiece(ByteStreamer &Streamer,
const MachineLocation &MLoc,
unsigned PieceSizeInBits,
unsigned PieceOffsetInBits) const {
assert(MLoc.isReg() && "MLoc must be a register");
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
// If this is a valid register number, emit it.
if (Reg >= 0) {
emitDwarfRegOp(Streamer, Reg);
emitDwarfOpPiece(Streamer, PieceSizeInBits, PieceOffsetInBits);
return;
}
// Walk up the super-register chain until we find a valid number.
// For example, EAX on x86_64 is a 32-bit piece of RAX with offset 0.
for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid(); ++SR) {
Reg = TRI->getDwarfRegNum(*SR, false);
if (Reg >= 0) {
unsigned Idx = TRI->getSubRegIndex(*SR, MLoc.getReg());
unsigned Size = TRI->getSubRegIdxSize(Idx);
unsigned Offset = TRI->getSubRegIdxOffset(Idx);
OutStreamer.AddComment("super-register");
emitDwarfRegOp(Streamer, Reg);
if (PieceOffsetInBits == Offset) {
emitDwarfOpPiece(Streamer, Size, Offset);
} else {
// If this is part of a variable in a sub-register at a
// non-zero offset, we need to manually shift the value into
// place, since the DW_OP_piece describes the part of the
// variable, not the position of the subregister.
emitDwarfOpPiece(Streamer, Size, PieceOffsetInBits);
if (Offset)
emitDwarfOpShr(Streamer, Offset);
}
return;
}
}
// Otherwise, attempt to find a covering set of sub-register numbers.
// For example, Q0 on ARM is a composition of D0+D1.
//
// Keep track of the current position so we can emit the more
// efficient DW_OP_piece.
unsigned CurPos = PieceOffsetInBits;
// The size of the register in bits, assuming 8 bits per byte.
unsigned RegSize = TRI->getMinimalPhysRegClass(MLoc.getReg())->getSize() * 8;
// Keep track of the bits in the register we already emitted, so we
// can avoid emitting redundant aliasing subregs.
SmallBitVector Coverage(RegSize, false);
for (MCSubRegIterator SR(MLoc.getReg(), TRI); SR.isValid(); ++SR) {
unsigned Idx = TRI->getSubRegIndex(MLoc.getReg(), *SR);
unsigned Size = TRI->getSubRegIdxSize(Idx);
unsigned Offset = TRI->getSubRegIdxOffset(Idx);
Reg = TRI->getDwarfRegNum(*SR, false);
// Intersection between the bits we already emitted and the bits
// covered by this subregister.
SmallBitVector Intersection(RegSize, false);
Intersection.set(Offset, Offset + Size);
Intersection ^= Coverage;
// If this sub-register has a DWARF number and we haven't covered
// its range, emit a DWARF piece for it.
if (Reg >= 0 && Intersection.any()) {
OutStreamer.AddComment("sub-register");
emitDwarfRegOp(Streamer, Reg);
emitDwarfOpPiece(Streamer, Size, Offset == CurPos ? 0 : Offset);
CurPos = Offset + Size;
// Mark it as emitted.
Coverage.set(Offset, Offset + Size);
}
}
if (CurPos == PieceOffsetInBits) {
// FIXME: We have no reasonable way of handling errors in here.
Streamer.EmitInt8(dwarf::DW_OP_nop,
"nop (could not find a dwarf register number)");
}
}
/// EmitDwarfRegOp - Emit dwarf register operation.
void AsmPrinter::EmitDwarfRegOp(ByteStreamer &Streamer,
const MachineLocation &MLoc,
bool Indirect) const {
const TargetRegisterInfo *TRI = TM.getRegisterInfo();
int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
if (Reg < 0) {
// We assume that pointers are always in an addressable register.
if (Indirect || MLoc.isIndirect()) {
// FIXME: We have no reasonable way of handling errors in here. The
// caller might be in the middle of a dwarf expression. We should
// probably assert that Reg >= 0 once debug info generation is more
// mature.
Streamer.EmitInt8(dwarf::DW_OP_nop,
"nop (invalid dwarf register number for indirect loc)");
return;
}
// Attempt to find a valid super- or sub-register.
return EmitDwarfRegOpPiece(Streamer, MLoc);
}
if (MLoc.isIndirect())
emitDwarfRegOpIndirect(Streamer, Reg, MLoc.getOffset(), Indirect);
else if (Indirect)
emitDwarfRegOpIndirect(Streamer, Reg, 0, false);
else
emitDwarfRegOp(Streamer, Reg);
}
//===----------------------------------------------------------------------===//
// Dwarf Lowering Routines
//===----------------------------------------------------------------------===//
void AsmPrinter::emitCFIInstruction(const MCCFIInstruction &Inst) const {
switch (Inst.getOperation()) {
default:
llvm_unreachable("Unexpected instruction");
case MCCFIInstruction::OpDefCfaOffset:
OutStreamer.EmitCFIDefCfaOffset(Inst.getOffset());
break;
case MCCFIInstruction::OpDefCfa:
OutStreamer.EmitCFIDefCfa(Inst.getRegister(), Inst.getOffset());
break;
case MCCFIInstruction::OpDefCfaRegister:
OutStreamer.EmitCFIDefCfaRegister(Inst.getRegister());
break;
case MCCFIInstruction::OpOffset:
OutStreamer.EmitCFIOffset(Inst.getRegister(), Inst.getOffset());
break;
case MCCFIInstruction::OpRegister:
OutStreamer.EmitCFIRegister(Inst.getRegister(), Inst.getRegister2());
break;
case MCCFIInstruction::OpWindowSave:
OutStreamer.EmitCFIWindowSave();
break;
case MCCFIInstruction::OpSameValue:
OutStreamer.EmitCFISameValue(Inst.getRegister());
break;
}
}