llvm-6502/utils/TableGen/CodeGenTarget.cpp

690 lines
25 KiB
C++
Raw Normal View History

//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class wrap target description classes used by the various code
// generation TableGen backends. This makes it easier to access the data and
// provides a single place that needs to check it for validity. All of these
// classes throw exceptions on error conditions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "CodeGenIntrinsics.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Streams.h"
#include <set>
#include <algorithm>
using namespace llvm;
static cl::opt<unsigned>
AsmWriterNum("asmwriternum", cl::init(0),
cl::desc("Make -gen-asm-writer emit assembly writer #N"));
/// getValueType - Return the MCV::ValueType that the specified TableGen record
/// corresponds to.
MVT::ValueType llvm::getValueType(Record *Rec) {
return (MVT::ValueType)Rec->getValueAsInt("Value");
}
std::string llvm::getName(MVT::ValueType T) {
switch (T) {
case MVT::Other: return "UNKNOWN";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::Flag: return "MVT::Flag";
case MVT::isVoid:return "MVT::void";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v3i32: return "MVT::v3i32";
case MVT::v3f32: return "MVT::v3f32";
case MVT::iPTR: return "TLI.getPointerTy()";
default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
}
}
std::string llvm::getEnumName(MVT::ValueType T) {
switch (T) {
case MVT::Other: return "MVT::Other";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::Flag: return "MVT::Flag";
case MVT::isVoid:return "MVT::isVoid";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v3i32: return "MVT::v3i32";
case MVT::v3f32: return "MVT::v3f32";
case MVT::iPTR: return "MVT::iPTR";
default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
}
}
/// getTarget - Return the current instance of the Target class.
///
CodeGenTarget::CodeGenTarget() {
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
if (Targets.size() == 0)
throw std::string("ERROR: No 'Target' subclasses defined!");
if (Targets.size() != 1)
throw std::string("ERROR: Multiple subclasses of Target defined!");
TargetRec = Targets[0];
}
const std::string &CodeGenTarget::getName() const {
return TargetRec->getName();
}
Record *CodeGenTarget::getInstructionSet() const {
return TargetRec->getValueAsDef("InstructionSet");
}
/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *CodeGenTarget::getAsmWriter() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
if (AsmWriterNum >= LI.size())
throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
return LI[AsmWriterNum];
}
void CodeGenTarget::ReadRegisters() const {
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
if (Regs.empty())
throw std::string("No 'Register' subclasses defined!");
Registers.reserve(Regs.size());
Registers.assign(Regs.begin(), Regs.end());
}
CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) {
DeclaredSpillSize = R->getValueAsInt("SpillSize");
DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment");
}
const std::string &CodeGenRegister::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadRegisterClasses() const {
std::vector<Record*> RegClasses =
Records.getAllDerivedDefinitions("RegisterClass");
if (RegClasses.empty())
throw std::string("No 'RegisterClass' subclasses defined!");
RegisterClasses.reserve(RegClasses.size());
RegisterClasses.assign(RegClasses.begin(), RegClasses.end());
}
std::vector<unsigned char> CodeGenTarget::getRegisterVTs(Record *R) const {
std::vector<unsigned char> Result;
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RegisterClasses[i];
for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) {
if (R == RC.Elements[ei]) {
const std::vector<MVT::ValueType> &InVTs = RC.getValueTypes();
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
Result.push_back(InVTs[i]);
}
}
}
return Result;
}
CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) {
// Rename anonymous register classes.
if (R->getName().size() > 9 && R->getName()[9] == '.') {
static unsigned AnonCounter = 0;
R->setName("AnonRegClass_"+utostr(AnonCounter++));
}
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Record *Type = TypeList[i];
if (!Type->isSubClassOf("ValueType"))
throw "RegTypes list member '" + Type->getName() +
"' does not derive from the ValueType class!";
VTs.push_back(getValueType(Type));
}
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList");
for (unsigned i = 0, e = RegList.size(); i != e; ++i) {
Record *Reg = RegList[i];
if (!Reg->isSubClassOf("Register"))
throw "Register Class member '" + Reg->getName() +
"' does not derive from the Register class!";
Elements.push_back(Reg);
}
std::vector<Record*> SubRegClassList =
R->getValueAsListOfDefs("SubRegClassList");
for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) {
Record *SubRegClass = SubRegClassList[i];
if (!SubRegClass->isSubClassOf("RegisterClass"))
throw "Register Class member '" + SubRegClass->getName() +
"' does not derive from the RegisterClass class!";
SubRegClasses.push_back(SubRegClass);
}
// Allow targets to override the size in bits of the RegisterClass.
unsigned Size = R->getValueAsInt("Size");
Namespace = R->getValueAsString("Namespace");
SpillSize = Size ? Size : MVT::getSizeInBits(VTs[0]);
SpillAlignment = R->getValueAsInt("Alignment");
CopyCost = R->getValueAsInt("CopyCost");
MethodBodies = R->getValueAsCode("MethodBodies");
MethodProtos = R->getValueAsCode("MethodProtos");
}
const std::string &CodeGenRegisterClass::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadLegalValueTypes() const {
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri)
LegalValueTypes.push_back(RCs[i].VTs[ri]);
// Remove duplicates.
std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
LegalValueTypes.end()),
LegalValueTypes.end());
}
void CodeGenTarget::ReadInstructions() const {
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
if (Insts.size() <= 2)
throw std::string("No 'Instruction' subclasses defined!");
// Parse the instructions defined in the .td file.
std::string InstFormatName =
getAsmWriter()->getValueAsString("InstFormatName");
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
std::string AsmStr = Insts[i]->getValueAsString(InstFormatName);
Instructions.insert(std::make_pair(Insts[i]->getName(),
CodeGenInstruction(Insts[i], AsmStr)));
}
}
/// getInstructionsByEnumValue - Return all of the instructions defined by the
/// target, ordered by their enum value.
void CodeGenTarget::
getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
&NumberedInstructions) {
std::map<std::string, CodeGenInstruction>::const_iterator I;
I = getInstructions().find("PHI");
if (I == Instructions.end()) throw "Could not find 'PHI' instruction!";
const CodeGenInstruction *PHI = &I->second;
I = getInstructions().find("INLINEASM");
if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!";
const CodeGenInstruction *INLINEASM = &I->second;
I = getInstructions().find("LABEL");
if (I == Instructions.end()) throw "Could not find 'LABEL' instruction!";
const CodeGenInstruction *LABEL = &I->second;
I = getInstructions().find("EXTRACT_SUBREG");
if (I == Instructions.end())
throw "Could not find 'EXTRACT_SUBREG' instruction!";
const CodeGenInstruction *EXTRACT_SUBREG = &I->second;
I = getInstructions().find("INSERT_SUBREG");
if (I == Instructions.end())
throw "Could not find 'INSERT_SUBREG' instruction!";
const CodeGenInstruction *INSERT_SUBREG = &I->second;
// Print out the rest of the instructions now.
NumberedInstructions.push_back(PHI);
NumberedInstructions.push_back(INLINEASM);
NumberedInstructions.push_back(LABEL);
NumberedInstructions.push_back(EXTRACT_SUBREG);
NumberedInstructions.push_back(INSERT_SUBREG);
for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II)
if (&II->second != PHI &&
&II->second != INLINEASM &&
&II->second != LABEL &&
&II->second != EXTRACT_SUBREG &&
&II->second != INSERT_SUBREG)
NumberedInstructions.push_back(&II->second);
}
/// isLittleEndianEncoding - Return whether this target encodes its instruction
/// in little-endian format, i.e. bits laid out in the order [0..n]
///
bool CodeGenTarget::isLittleEndianEncoding() const {
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
}
static void ParseConstraint(const std::string &CStr, CodeGenInstruction *I) {
// FIXME: Only supports TIED_TO for now.
std::string::size_type pos = CStr.find_first_of('=');
assert(pos != std::string::npos && "Unrecognized constraint");
std::string Name = CStr.substr(0, pos);
// TIED_TO: $src1 = $dst
std::string::size_type wpos = Name.find_first_of(" \t");
if (wpos == std::string::npos)
throw "Illegal format for tied-to constraint: '" + CStr + "'";
std::string DestOpName = Name.substr(0, wpos);
std::pair<unsigned,unsigned> DestOp = I->ParseOperandName(DestOpName, false);
Name = CStr.substr(pos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
throw "Illegal format for tied-to constraint: '" + CStr + "'";
std::pair<unsigned,unsigned> SrcOp =
I->ParseOperandName(Name.substr(wpos), false);
if (SrcOp > DestOp)
throw "Illegal tied-to operand constraint '" + CStr + "'";
unsigned FlatOpNo = I->getFlattenedOperandNumber(SrcOp);
// Build the string for the operand.
std::string OpConstraint =
"((" + utostr(FlatOpNo) + " << 16) | (1 << TOI::TIED_TO))";
if (!I->OperandList[DestOp.first].Constraints[DestOp.second].empty())
throw "Operand '" + DestOpName + "' cannot have multiple constraints!";
I->OperandList[DestOp.first].Constraints[DestOp.second] = OpConstraint;
}
static void ParseConstraints(const std::string &CStr, CodeGenInstruction *I) {
// Make sure the constraints list for each operand is large enough to hold
// constraint info, even if none is present.
for (unsigned i = 0, e = I->OperandList.size(); i != e; ++i)
I->OperandList[i].Constraints.resize(I->OperandList[i].MINumOperands);
if (CStr.empty()) return;
const std::string delims(",");
std::string::size_type bidx, eidx;
bidx = CStr.find_first_not_of(delims);
while (bidx != std::string::npos) {
eidx = CStr.find_first_of(delims, bidx);
if (eidx == std::string::npos)
eidx = CStr.length();
ParseConstraint(CStr.substr(bidx, eidx), I);
bidx = CStr.find_first_not_of(delims, eidx);
}
}
CodeGenInstruction::CodeGenInstruction(Record *R, const std::string &AsmStr)
: TheDef(R), AsmString(AsmStr) {
Name = R->getValueAsString("Name");
Namespace = R->getValueAsString("Namespace");
isReturn = R->getValueAsBit("isReturn");
isBranch = R->getValueAsBit("isBranch");
isIndirectBranch = R->getValueAsBit("isIndirectBranch");
isBarrier = R->getValueAsBit("isBarrier");
isCall = R->getValueAsBit("isCall");
isLoad = R->getValueAsBit("isLoad");
isStore = R->getValueAsBit("isStore");
bool isTwoAddress = R->getValueAsBit("isTwoAddress");
isPredicable = R->getValueAsBit("isPredicable");
isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
isCommutable = R->getValueAsBit("isCommutable");
isTerminator = R->getValueAsBit("isTerminator");
isReMaterializable = R->getValueAsBit("isReMaterializable");
hasDelaySlot = R->getValueAsBit("hasDelaySlot");
usesCustomDAGSchedInserter = R->getValueAsBit("usesCustomDAGSchedInserter");
hasCtrlDep = R->getValueAsBit("hasCtrlDep");
isNotDuplicable = R->getValueAsBit("isNotDuplicable");
hasOptionalDef = false;
hasVariableNumberOfOperands = false;
DagInit *DI;
try {
DI = R->getValueAsDag("OutOperandList");
} catch (...) {
// Error getting operand list, just ignore it (sparcv9).
AsmString.clear();
OperandList.clear();
return;
}
NumDefs = DI->getNumArgs();
DagInit *IDI;
try {
IDI = R->getValueAsDag("InOperandList");
} catch (...) {
// Error getting operand list, just ignore it (sparcv9).
AsmString.clear();
OperandList.clear();
return;
}
DI = (DagInit*)(new BinOpInit(BinOpInit::CONCAT, DI, IDI))->Fold();
unsigned MIOperandNo = 0;
std::set<std::string> OperandNames;
for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
DefInit *Arg = dynamic_cast<DefInit*>(DI->getArg(i));
if (!Arg)
throw "Illegal operand for the '" + R->getName() + "' instruction!";
Record *Rec = Arg->getDef();
std::string PrintMethod = "printOperand";
unsigned NumOps = 1;
DagInit *MIOpInfo = 0;
if (Rec->isSubClassOf("Operand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
// Verify that MIOpInfo has an 'ops' root value.
if (!dynamic_cast<DefInit*>(MIOpInfo->getOperator()) ||
dynamic_cast<DefInit*>(MIOpInfo->getOperator())
->getDef()->getName() != "ops")
throw "Bad value for MIOperandInfo in operand '" + Rec->getName() +
"'\n";
// If we have MIOpInfo, then we have #operands equal to number of entries
// in MIOperandInfo.
if (unsigned NumArgs = MIOpInfo->getNumArgs())
NumOps = NumArgs;
if (Rec->isSubClassOf("PredicateOperand"))
isPredicable = true;
else if (Rec->isSubClassOf("OptionalDefOperand"))
hasOptionalDef = true;
} else if (Rec->getName() == "variable_ops") {
hasVariableNumberOfOperands = true;
continue;
} else if (!Rec->isSubClassOf("RegisterClass") &&
Rec->getName() != "ptr_rc")
throw "Unknown operand class '" + Rec->getName() +
"' in instruction '" + R->getName() + "' instruction!";
// Check that the operand has a name and that it's unique.
if (DI->getArgName(i).empty())
throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
" has no name!";
if (!OperandNames.insert(DI->getArgName(i)).second)
throw "In instruction '" + R->getName() + "', operand #" + utostr(i) +
" has the same name as a previous operand!";
OperandList.push_back(OperandInfo(Rec, DI->getArgName(i), PrintMethod,
MIOperandNo, NumOps, MIOpInfo));
MIOperandNo += NumOps;
}
// Parse Constraints.
ParseConstraints(R->getValueAsString("Constraints"), this);
// For backward compatibility: isTwoAddress means operand 1 is tied to
// operand 0.
if (isTwoAddress) {
if (!OperandList[1].Constraints[0].empty())
throw R->getName() + ": cannot use isTwoAddress property: instruction "
"already has constraint set!";
OperandList[1].Constraints[0] = "((0 << 16) | (1 << TOI::TIED_TO))";
}
// Any operands with unset constraints get 0 as their constraint.
for (unsigned op = 0, e = OperandList.size(); op != e; ++op)
for (unsigned j = 0, e = OperandList[op].MINumOperands; j != e; ++j)
if (OperandList[op].Constraints[j].empty())
OperandList[op].Constraints[j] = "0";
// Parse the DisableEncoding field.
std::string DisableEncoding = R->getValueAsString("DisableEncoding");
while (1) {
std::string OpName = getToken(DisableEncoding, " ,\t");
if (OpName.empty()) break;
// Figure out which operand this is.
std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);
// Mark the operand as not-to-be encoded.
if (Op.second >= OperandList[Op.first].DoNotEncode.size())
OperandList[Op.first].DoNotEncode.resize(Op.second+1);
OperandList[Op.first].DoNotEncode[Op.second] = true;
}
}
/// getOperandNamed - Return the index of the operand with the specified
/// non-empty name. If the instruction does not have an operand with the
/// specified name, throw an exception.
///
unsigned CodeGenInstruction::getOperandNamed(const std::string &Name) const {
assert(!Name.empty() && "Cannot search for operand with no name!");
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
if (OperandList[i].Name == Name) return i;
throw "Instruction '" + TheDef->getName() +
"' does not have an operand named '$" + Name + "'!";
}
std::pair<unsigned,unsigned>
CodeGenInstruction::ParseOperandName(const std::string &Op,
bool AllowWholeOp) {
if (Op.empty() || Op[0] != '$')
throw TheDef->getName() + ": Illegal operand name: '" + Op + "'";
std::string OpName = Op.substr(1);
std::string SubOpName;
// Check to see if this is $foo.bar.
std::string::size_type DotIdx = OpName.find_first_of(".");
if (DotIdx != std::string::npos) {
SubOpName = OpName.substr(DotIdx+1);
if (SubOpName.empty())
throw TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'";
OpName = OpName.substr(0, DotIdx);
}
unsigned OpIdx = getOperandNamed(OpName);
if (SubOpName.empty()) { // If no suboperand name was specified:
// If one was needed, throw.
if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp &&
SubOpName.empty())
throw TheDef->getName() + ": Illegal to refer to"
" whole operand part of complex operand '" + Op + "'";
// Otherwise, return the operand.
return std::make_pair(OpIdx, 0U);
}
// Find the suboperand number involved.
DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo;
if (MIOpInfo == 0)
throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'";
// Find the operand with the right name.
for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i)
if (MIOpInfo->getArgName(i) == SubOpName)
return std::make_pair(OpIdx, i);
// Otherwise, didn't find it!
throw TheDef->getName() + ": unknown suboperand name in '" + Op + "'";
}
//===----------------------------------------------------------------------===//
// ComplexPattern implementation
//
ComplexPattern::ComplexPattern(Record *R) {
Ty = ::getValueType(R->getValueAsDef("Ty"));
NumOperands = R->getValueAsInt("NumOperands");
SelectFunc = R->getValueAsString("SelectFunc");
RootNodes = R->getValueAsListOfDefs("RootNodes");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOptInFlag") {
Properties |= 1 << SDNPOptInFlag;
} else {
cerr << "Unsupported SD Node property '" << PropList[i]->getName()
<< "' on ComplexPattern '" << R->getName() << "'!\n";
exit(1);
}
}
//===----------------------------------------------------------------------===//
// CodeGenIntrinsic Implementation
//===----------------------------------------------------------------------===//
std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC) {
std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
std::vector<CodeGenIntrinsic> Result;
// If we are in the context of a target .td file, get the target info so that
// we can decode the current intptr_t.
CodeGenTarget *CGT = 0;
if (Records.getClass("Target") &&
Records.getAllDerivedDefinitions("Target").size() == 1)
CGT = new CodeGenTarget();
for (unsigned i = 0, e = I.size(); i != e; ++i)
Result.push_back(CodeGenIntrinsic(I[i], CGT));
delete CGT;
return Result;
}
CodeGenIntrinsic::CodeGenIntrinsic(Record *R, CodeGenTarget *CGT) {
TheDef = R;
std::string DefName = R->getName();
ModRef = WriteMem;
isOverloaded = false;
if (DefName.size() <= 4 ||
std::string(DefName.begin(), DefName.begin()+4) != "int_")
throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
EnumName = std::string(DefName.begin()+4, DefName.end());
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
TargetPrefix = R->getValueAsString("TargetPrefix");
Name = R->getValueAsString("LLVMName");
if (Name == "") {
// If an explicit name isn't specified, derive one from the DefName.
Name = "llvm.";
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
if (EnumName[i] == '_')
Name += '.';
else
Name += EnumName[i];
} else {
// Verify it starts with "llvm.".
if (Name.size() <= 5 ||
std::string(Name.begin(), Name.begin()+5) != "llvm.")
throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
}
// If TargetPrefix is specified, make sure that Name starts with
// "llvm.<targetprefix>.".
if (!TargetPrefix.empty()) {
if (Name.size() < 6+TargetPrefix.size() ||
std::string(Name.begin()+5, Name.begin()+6+TargetPrefix.size())
!= (TargetPrefix+"."))
throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
TargetPrefix + ".'!";
}
// Parse the list of argument types.
ListInit *TypeList = R->getValueAsListInit("Types");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::ValueType VT = getValueType(TyEl->getValueAsDef("VT"));
isOverloaded |= VT == MVT::iAny || VT == MVT::fAny;
ArgVTs.push_back(VT);
ArgTypeDefs.push_back(TyEl);
}
if (ArgVTs.size() == 0)
throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!";
// Parse the intrinsic properties.
ListInit *PropList = R->getValueAsListInit("Properties");
for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
Record *Property = PropList->getElementAsRecord(i);
assert(Property->isSubClassOf("IntrinsicProperty") &&
"Expected a property!");
if (Property->getName() == "IntrNoMem")
ModRef = NoMem;
else if (Property->getName() == "IntrReadArgMem")
ModRef = ReadArgMem;
else if (Property->getName() == "IntrReadMem")
ModRef = ReadMem;
else if (Property->getName() == "IntrWriteArgMem")
ModRef = WriteArgMem;
else if (Property->getName() == "IntrWriteMem")
ModRef = WriteMem;
else
assert(0 && "Unknown property!");
}
}