llvm-6502/include/llvm/Target/TargetInstrItineraries.h

247 lines
9.0 KiB
C
Raw Normal View History

//===-- llvm/Target/TargetInstrItineraries.h - Scheduling -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the structures used for instruction
// itineraries, stages, and operand reads/writes. This is used by
// schedulers to determine instruction stages and latencies.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_TARGETINSTRITINERARIES_H
#define LLVM_TARGET_TARGETINSTRITINERARIES_H
#include <algorithm>
namespace llvm {
//===----------------------------------------------------------------------===//
/// Instruction stage - These values represent a non-pipelined step in
/// the execution of an instruction. Cycles represents the number of
/// discrete time slots needed to complete the stage. Units represent
/// the choice of functional units that can be used to complete the
/// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many
/// cycles should elapse from the start of this stage to the start of
/// the next stage in the itinerary. A value of -1 indicates that the
/// next stage should start immediately after the current one.
/// For example:
///
/// { 1, x, -1 }
/// indicates that the stage occupies FU x for 1 cycle and that
/// the next stage starts immediately after this one.
///
/// { 2, x|y, 1 }
/// indicates that the stage occupies either FU x or FU y for 2
/// consecuative cycles and that the next stage starts one cycle
/// after this stage starts. That is, the stage requirements
/// overlap in time.
///
/// { 1, x, 0 }
/// indicates that the stage occupies FU x for 1 cycle and that
/// the next stage starts in this same cycle. This can be used to
/// indicate that the instruction requires multiple stages at the
/// same time.
///
/// FU reservation can be of two different kinds:
/// - FUs which instruction actually requires
/// - FUs which instruction just reserves. Reserved unit is not available for
/// execution of other instruction. However, several instructions can reserve
/// the same unit several times.
/// Such two types of units reservation is used to model instruction domain
/// change stalls, FUs using the same resource (e.g. same register file), etc.
struct InstrStage {
enum ReservationKinds {
Required = 0,
Reserved = 1
};
unsigned Cycles_; ///< Length of stage in machine cycles
unsigned Units_; ///< Choice of functional units
int NextCycles_; ///< Number of machine cycles to next stage
ReservationKinds Kind_; ///< Kind of the FU reservation
/// getCycles - returns the number of cycles the stage is occupied
unsigned getCycles() const {
return Cycles_;
}
/// getUnits - returns the choice of FUs
unsigned getUnits() const {
return Units_;
}
ReservationKinds getReservationKind() const {
return Kind_;
}
/// getNextCycles - returns the number of cycles from the start of
/// this stage to the start of the next stage in the itinerary
unsigned getNextCycles() const {
return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
}
};
//===----------------------------------------------------------------------===//
/// Instruction itinerary - An itinerary represents the scheduling
/// information for an instruction. This includes a set of stages
/// occupies by the instruction, and the pipeline cycle in which
/// operands are read and written.
///
struct InstrItinerary {
unsigned NumMicroOps; ///< # of micro-ops, 0 means it's variable
unsigned FirstStage; ///< Index of first stage in itinerary
unsigned LastStage; ///< Index of last + 1 stage in itinerary
unsigned FirstOperandCycle; ///< Index of first operand rd/wr
unsigned LastOperandCycle; ///< Index of last + 1 operand rd/wr
};
//===----------------------------------------------------------------------===//
/// Instruction itinerary Data - Itinerary data supplied by a subtarget to be
/// used by a target.
///
class InstrItineraryData {
public:
const InstrStage *Stages; ///< Array of stages selected
const unsigned *OperandCycles; ///< Array of operand cycles selected
const unsigned *Forwardings; ///< Array of pipeline forwarding pathes
const InstrItinerary *Itineraries; ///< Array of itineraries selected
/// Ctors.
///
InstrItineraryData() : Stages(0), OperandCycles(0), Forwardings(0),
Itineraries(0) {}
InstrItineraryData(const InstrStage *S, const unsigned *OS,
const unsigned *F, const InstrItinerary *I)
: Stages(S), OperandCycles(OS), Forwardings(F), Itineraries(I) {}
/// isEmpty - Returns true if there are no itineraries.
///
bool isEmpty() const { return Itineraries == 0; }
/// isEndMarker - Returns true if the index is for the end marker
/// itinerary.
///
bool isEndMarker(unsigned ItinClassIndx) const {
return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
(Itineraries[ItinClassIndx].LastStage == ~0U));
}
/// beginStage - Return the first stage of the itinerary.
///
const InstrStage *beginStage(unsigned ItinClassIndx) const {
unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
return Stages + StageIdx;
}
/// endStage - Return the last+1 stage of the itinerary.
///
const InstrStage *endStage(unsigned ItinClassIndx) const {
unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
return Stages + StageIdx;
}
/// getStageLatency - Return the total stage latency of the given
/// class. The latency is the maximum completion time for any stage
/// in the itinerary.
///
unsigned getStageLatency(unsigned ItinClassIndx) const {
// If the target doesn't provide itinerary information, use a
// simple non-zero default value for all instructions.
if (isEmpty())
return 1;
// Calculate the maximum completion time for any stage.
unsigned Latency = 0, StartCycle = 0;
for (const InstrStage *IS = beginStage(ItinClassIndx),
*E = endStage(ItinClassIndx); IS != E; ++IS) {
Latency = std::max(Latency, StartCycle + IS->getCycles());
StartCycle += IS->getNextCycles();
}
return Latency;
}
/// getOperandCycle - Return the cycle for the given class and
/// operand. Return -1 if no cycle is specified for the operand.
///
int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
if (isEmpty())
return -1;
unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
if ((FirstIdx + OperandIdx) >= LastIdx)
return -1;
return (int)OperandCycles[FirstIdx + OperandIdx];
}
/// hasPipelineForwarding - Return true if there is a pipeline forwarding
/// between instructions of itinerary classes DefClass and UseClasses so that
/// value produced by an instruction of itinerary class DefClass, operand
/// index DefIdx can be bypassed when it's read by an instruction of
/// itinerary class UseClass, operand index UseIdx.
bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
unsigned UseClass, unsigned UseIdx) const {
unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
if ((FirstDefIdx + DefIdx) >= LastDefIdx)
return false;
if (Forwardings[FirstDefIdx + DefIdx] == 0)
return false;
unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
if ((FirstUseIdx + UseIdx) >= LastUseIdx)
return false;
return Forwardings[FirstDefIdx + DefIdx] ==
Forwardings[FirstUseIdx + UseIdx];
}
/// getOperandLatency - Compute and return the use operand latency of a given
/// itinerary class and operand index if the value is produced by an
/// instruction of the specified itinerary class and def operand index.
int getOperandLatency(unsigned DefClass, unsigned DefIdx,
unsigned UseClass, unsigned UseIdx) const {
if (isEmpty())
return -1;
int DefCycle = getOperandCycle(DefClass, DefIdx);
if (DefCycle == -1)
return -1;
int UseCycle = getOperandCycle(UseClass, UseIdx);
if (UseCycle == -1)
return -1;
UseCycle = DefCycle - UseCycle + 1;
if (UseCycle > 0 &&
hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
// FIXME: This assumes one cycle benefit for every pipeline forwarding.
--UseCycle;
return UseCycle;
}
/// isMicroCoded - Return true if the instructions in the given class decode
/// to more than one micro-ops.
bool isMicroCoded(unsigned ItinClassIndx) const {
if (isEmpty())
return false;
return Itineraries[ItinClassIndx].NumMicroOps != 1;
}
};
} // End llvm namespace
#endif