llvm-6502/lib/Transforms/Instrumentation/ProfilePaths/RetracePath.cpp

309 lines
9.1 KiB
C++
Raw Normal View History

//===- RetracePath.cpp ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Retraces a path of BasicBlock, given a path number and a graph!
//
//===----------------------------------------------------------------------===//
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/Support/CFG.h"
#include "Graph.h"
#include <iostream>
using std::vector;
using std::map;
using std::cerr;
namespace llvm {
//Routines to get the path trace!
void getPathFrmNode(Node *n, vector<BasicBlock*> &vBB, int pathNo, Graph &g,
vector<Edge> &stDummy, vector<Edge> &exDummy,
vector<Edge> &be,
double strand){
Graph::nodeList &nlist = g.getNodeList(n);
//printGraph(g);
//std::cerr<<"Path No: "<<pathNo<<"\n";
int maxCount=-9999999;
bool isStart=false;
if(*n==*g.getRoot())//its root: so first node of path
isStart=true;
double edgeRnd=0;
Node *nextRoot=n;
for(Graph::nodeList::iterator NLI = nlist.begin(), NLE=nlist.end(); NLI!=NLE;
++NLI){
if(NLI->weight>maxCount && NLI->weight<=pathNo){
maxCount=NLI->weight;
nextRoot=NLI->element;
edgeRnd=NLI->randId;
if(isStart)
strand=NLI->randId;
}
}
if(!isStart)
assert(strand!=-1 && "strand not assigned!");
assert(!(*nextRoot==*n && pathNo>0) && "No more BBs to go");
assert(!(*nextRoot==*g.getExit() && pathNo-maxCount!=0) && "Reached exit");
vBB.push_back(n->getElement());
if(pathNo-maxCount==0 && *nextRoot==*g.getExit()){
//look for strnd and edgeRnd now:
bool has1=false, has2=false;
//check if exit has it
for(vector<Edge>::iterator VI=exDummy.begin(), VE=exDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==edgeRnd){
has2=true;
break;
}
}
//check if start has it
for(vector<Edge>::iterator VI=stDummy.begin(), VE=stDummy.end(); VI!=VE;
++VI){
if(VI->getRandId()==strand){
has1=true;
break;
}
}
if(has1){
//find backedge with endpoint vBB[1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getSecond()->getElement() == vBB[1] ){
//vBB[0]=VI->getFirst()->getElement();
vBB.erase(vBB.begin());
break;
}
}
}
if(has2){
//find backedge with startpoint vBB[vBB.size()-1]
for(vector<Edge>::iterator VI=be.begin(), VE=be.end(); VI!=VE; ++VI){
assert(vBB.size()>0 && "vector too small");
if( VI->getFirst()->getElement() == vBB[vBB.size()-1] &&
VI->getSecond()->getElement() == vBB[0]){
//vBB.push_back(VI->getSecond()->getElement());
break;
}
}
}
else
vBB.push_back(nextRoot->getElement());
return;
}
assert(pathNo-maxCount>=0);
return getPathFrmNode(nextRoot, vBB, pathNo-maxCount, g, stDummy,
exDummy, be, strand);
}
static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
if(((*si)->getElement())==BB){
return *si;
}
}
return NULL;
}
void getBBtrace(vector<BasicBlock *> &vBB, int pathNo, Function *M){//,
// vector<Instruction *> &instToErase){
//step 1: create graph
//Transform the cfg s.t. we have just one exit node
std::vector<Node *> nodes;
std::vector<Edge> edges;
Node *exitNode=0, *startNode=0;
//Creat cfg just once for each function!
static std::map<Function *, Graph *> graphMap;
//get backedges, exit and start edges for the graphs and store them
static std::map<Function *, vector<Edge> > stMap, exMap, beMap;
static std::map<Function *, Value *> pathReg; //path register
if(!graphMap[M]){
BasicBlock *ExitNode = 0;
for (Function::iterator I = M->begin(), E = M->end(); I != E; ++I){
if (isa<ReturnInst>(I->getTerminator())) {
ExitNode = I;
break;
}
}
assert(ExitNode!=0 && "exitnode not found");
//iterating over BBs and making graph
//The nodes must be uniquely identified:
//That is, no two nodes must hav same BB*
//keep a map for trigger basicblocks!
std::map<BasicBlock *, unsigned char> triggerBBs;
//First enter just nodes: later enter edges
for(Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
bool cont = false;
if(BB->size()==3 || BB->size() ==2){
for(BasicBlock::iterator II = BB->begin(), IE = BB->end();
II != IE; ++II){
if(CallInst *callInst = dyn_cast<CallInst>(II)){
//std::cerr<<*callInst;
Function *calledFunction = callInst->getCalledFunction();
if(calledFunction && calledFunction->getName() == "trigger"){
triggerBBs[BB] = 9;
cont = true;
//std::cerr<<"Found trigger!\n";
break;
}
}
}
}
if(cont)
continue;
// const Instruction *inst = BB->getInstList().begin();
// if(isa<CallInst>(inst)){
// Instruction *ii1 = BB->getInstList().begin();
// CallInst *callInst = dyn_cast<CallInst>(ii1);
// if(callInst->getCalledFunction()->getName()=="trigger")
// continue;
// }
Node *nd=new Node(BB);
nodes.push_back(nd);
if(&*BB==ExitNode)
exitNode=nd;
if(&*BB==&M->front())
startNode=nd;
}
assert(exitNode!=0 && startNode!=0 && "Start or exit not found!");
for (Function::iterator BB = M->begin(), BE=M->end(); BB != BE; ++BB){
if(triggerBBs[BB] == 9)
continue;
//if(BB->size()==3)
//if(CallInst *callInst = dyn_cast<CallInst>(BB->getInstList().begin()))
//if(callInst->getCalledFunction()->getName() == "trigger")
//continue;
// if(BB->size()==2){
// const Instruction *inst = BB->getInstList().begin();
// if(isa<CallInst>(inst)){
// Instruction *ii1 = BB->getInstList().begin();
// CallInst *callInst = dyn_cast<CallInst>(ii1);
// if(callInst->getCalledFunction()->getName()=="trigger")
// continue;
// }
// }
Node *nd=findBB(nodes, BB);
assert(nd && "No node for this edge!");
for(succ_iterator s=succ_begin(BB), se=succ_end(BB); s!=se; ++s){
if(triggerBBs[*s] == 9){
//if(!pathReg[M]){ //Get the path register for this!
//if(BB->size()>8)
// if(LoadInst *ldInst = dyn_cast<LoadInst>(BB->getInstList().begin()))
// pathReg[M] = ldInst->getPointerOperand();
//}
continue;
}
//if((*s)->size()==3)
//if(CallInst *callInst =
// dyn_cast<CallInst>((*s)->getInstList().begin()))
// if(callInst->getCalledFunction()->getName() == "trigger")
// continue;
// if((*s)->size()==2){
// const Instruction *inst = (*s)->getInstList().begin();
// if(isa<CallInst>(inst)){
// Instruction *ii1 = (*s)->getInstList().begin();
// CallInst *callInst = dyn_cast<CallInst>(ii1);
// if(callInst->getCalledFunction()->getName()=="trigger")
// continue;
// }
// }
Node *nd2 = findBB(nodes,*s);
assert(nd2 && "No node for this edge!");
Edge ed(nd,nd2,0);
edges.push_back(ed);
}
}
graphMap[M]= new Graph(nodes,edges, startNode, exitNode);
Graph *g = graphMap[M];
if (M->size() <= 1) return; //uninstrumented
//step 2: getBackEdges
//vector<Edge> be;
std::map<Node *, int> nodePriority;
g->getBackEdges(beMap[M], nodePriority);
//step 3: add dummy edges
//vector<Edge> stDummy;
//vector<Edge> exDummy;
addDummyEdges(stMap[M], exMap[M], *g, beMap[M]);
//step 4: value assgn to edges
int numPaths = valueAssignmentToEdges(*g, nodePriority, beMap[M]);
}
//step 5: now travel from root, select max(edge) < pathNo,
//and go on until reach the exit
getPathFrmNode(graphMap[M]->getRoot(), vBB, pathNo, *graphMap[M],
stMap[M], exMap[M], beMap[M], -1);
//post process vBB to locate instructions to be erased
/*
if(pathReg[M]){
for(vector<BasicBlock *>::iterator VBI = vBB.begin(), VBE = vBB.end();
VBI != VBE; ++VBI){
for(BasicBlock::iterator BBI = (*VBI)->begin(), BBE = (*VBI)->end();
BBI != BBE; ++BBI){
if(LoadInst *ldInst = dyn_cast<LoadInst>(BBI)){
if(pathReg[M] == ldInst->getPointerOperand())
instToErase.push_back(ldInst);
}
else if(StoreInst *stInst = dyn_cast<StoreInst>(BBI)){
if(pathReg[M] == stInst->getPointerOperand())
instToErase.push_back(stInst);
}
}
}
}
*/
}
} // End llvm namespace