llvm-6502/include/llvm/Value.h

221 lines
6.9 KiB
C
Raw Normal View History

//===-- llvm/Value.h - Definition of the Value class -------------*- C++ -*--=//
//
// This file defines the very important Value class. This is subclassed by a
// bunch of other important classes, like Instruction, Function, Type, etc...
//
// This file also defines the Use<> template for users of value.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_VALUE_H
#define LLVM_VALUE_H
#include "llvm/AbstractTypeUser.h"
#include "Support/Annotation.h"
#include "Support/Casting.h"
#include <iostream>
#include <vector>
class User;
class Type;
class Constant;
class Argument;
class Instruction;
class BasicBlock;
class GlobalValue;
class Function;
class GlobalVariable;
class SymbolTable;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
/// Value - The base class of all values computed by a program that may be used
/// as operands to other values.
///
class Value : public Annotable, // Values are annotable
public AbstractTypeUser { // Values use potentially abstract types
public:
enum ValueTy {
TypeVal, // This is an instance of Type
ConstantVal, // This is an instance of Constant
ArgumentVal, // This is an instance of Argument
InstructionVal, // This is an instance of Instruction
BasicBlockVal, // This is an instance of BasicBlock
FunctionVal, // This is an instance of Function
GlobalVariableVal, // This is an instance of GlobalVariable
};
private:
std::vector<User *> Uses;
std::string Name;
PATypeHandle Ty;
ValueTy VTy;
void operator=(const Value &); // Do not implement
Value(const Value &); // Do not implement
public:
Value(const Type *Ty, ValueTy vty, const std::string &name = "");
virtual ~Value();
/// dump - Support for debugging, callable in GDB: V->dump()
//
void dump() const;
/// print - Implement operator<< on Value...
///
virtual void print(std::ostream &O) const = 0;
/// All values are typed, get the type of this value.
///
inline const Type *getType() const { return Ty; }
// All values can potentially be named...
inline bool hasName() const { return Name != ""; }
inline const std::string &getName() const { return Name; }
virtual void setName(const std::string &name, SymbolTable * = 0) {
Name = name;
}
/// getValueType - Return the immediate subclass of this Value.
///
inline ValueTy getValueType() const { return VTy; }
/// replaceAllUsesWith - Go through the uses list for this definition and make
/// each use point to "V" instead of "this". After this completes, 'this's
/// use list is guaranteed to be empty.
///
void replaceAllUsesWith(Value *V);
/// refineAbstractType - This function is implemented because we use
/// potentially abstract types, and these types may be resolved to more
/// concrete types after we are constructed.
///
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
//----------------------------------------------------------------------
// Methods for handling the vector of uses of this Value.
//
typedef std::vector<User*>::iterator use_iterator;
typedef std::vector<User*>::const_iterator use_const_iterator;
inline unsigned use_size() const { return Uses.size(); }
inline bool use_empty() const { return Uses.empty(); }
inline use_iterator use_begin() { return Uses.begin(); }
inline use_const_iterator use_begin() const { return Uses.begin(); }
inline use_iterator use_end() { return Uses.end(); }
inline use_const_iterator use_end() const { return Uses.end(); }
inline User *use_back() { return Uses.back(); }
inline const User *use_back() const { return Uses.back(); }
/// addUse/killUse - These two methods should only be used by the Use class
/// below.
inline void addUse(User *I) { Uses.push_back(I); }
void killUse(User *I);
};
inline std::ostream &operator<<(std::ostream &OS, const Value *V) {
if (V == 0)
OS << "<null> value!\n";
else
V->print(OS);
return OS;
}
inline std::ostream &operator<<(std::ostream &OS, const Value &V) {
V.print(OS);
return OS;
}
//===----------------------------------------------------------------------===//
// Use Class
//===----------------------------------------------------------------------===//
// Use is here to make keeping the "use" list of a Value up-to-date really easy.
//
class Use {
Value *Val;
User *U;
public:
inline Use(Value *v, User *user) {
Val = v; U = user;
if (Val) Val->addUse(U);
}
inline Use(const Use &user) {
Val = 0;
U = user.U;
operator=(user.Val);
}
inline ~Use() { if (Val) Val->killUse(U); }
inline operator Value*() const { return Val; }
inline Value *operator=(Value *V) {
if (Val) Val->killUse(U);
Val = V;
if (V) V->addUse(U);
return V;
}
inline Value *operator->() { return Val; }
inline const Value *operator->() const { return Val; }
inline Value *get() { return Val; }
inline const Value *get() const { return Val; }
inline const Use &operator=(const Use &user) {
if (Val) Val->killUse(U);
Val = user.Val;
Val->addUse(U);
return *this;
}
};
template<> struct simplify_type<Use> {
typedef Value* SimpleType;
static SimpleType getSimplifiedValue(const Use &Val) {
return (SimpleType)Val.get();
}
};
template<> struct simplify_type<const Use> {
typedef Value* SimpleType;
static SimpleType getSimplifiedValue(const Use &Val) {
return (SimpleType)Val.get();
}
};
// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> inline bool isa_impl<Type, Value>(const Value &Val) {
return Val.getValueType() == Value::TypeVal;
}
template <> inline bool isa_impl<Constant, Value>(const Value &Val) {
return Val.getValueType() == Value::ConstantVal;
}
template <> inline bool isa_impl<Argument, Value>(const Value &Val) {
return Val.getValueType() == Value::ArgumentVal;
}
template <> inline bool isa_impl<Instruction, Value>(const Value &Val) {
return Val.getValueType() == Value::InstructionVal;
}
template <> inline bool isa_impl<BasicBlock, Value>(const Value &Val) {
return Val.getValueType() == Value::BasicBlockVal;
}
template <> inline bool isa_impl<Function, Value>(const Value &Val) {
return Val.getValueType() == Value::FunctionVal;
}
template <> inline bool isa_impl<GlobalVariable, Value>(const Value &Val) {
return Val.getValueType() == Value::GlobalVariableVal;
}
template <> inline bool isa_impl<GlobalValue, Value>(const Value &Val) {
return isa<GlobalVariable>(Val) || isa<Function>(Val);
}
#endif