llvm-6502/lib/Target/X86/X86CallingConv.td

344 lines
13 KiB
TableGen
Raw Normal View History

//===- X86CallingConv.td - Calling Conventions X86 32/64 ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This describes the calling conventions for the X86-32 and X86-64
// architectures.
//
//===----------------------------------------------------------------------===//
/// CCIfSubtarget - Match if the current subtarget has a feature F.
class CCIfSubtarget<string F, CCAction A>
: CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
//===----------------------------------------------------------------------===//
// Return Value Calling Conventions
//===----------------------------------------------------------------------===//
// Return-value conventions common to all X86 CC's.
def RetCC_X86Common : CallingConv<[
// Scalar values are returned in AX first, then DX.
CCIfType<[i8] , CCAssignToReg<[AL]>>,
CCIfType<[i16], CCAssignToReg<[AX, DX]>>,
CCIfType<[i32], CCAssignToReg<[EAX, EDX]>>,
CCIfType<[i64], CCAssignToReg<[RAX, RDX]>>,
// Vector types are returned in XMM0 and XMM1, when they fit. If the target
// doesn't have XMM registers, it won't have vector types.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0,XMM1]>>,
// MMX vector types are always returned in MM0. If the target doesn't have
// MM0, it doesn't support these vector types.
CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToReg<[MM0]>>,
// Long double types are always returned in ST0 (even with SSE).
CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
]>;
// X86-32 C return-value convention.
def RetCC_X86_32_C : CallingConv<[
// The X86-32 calling convention returns FP values in ST0, unless marked
// with "inreg" (used here to distinguish one kind of reg from another,
// weirdly; this is really the sse-regparm calling convention) in which
// case they use XMM0, otherwise it is the same as the common X86 calling
// conv.
CCIfInReg<CCIfSubtarget<"hasSSE2()",
CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-32 FastCC return-value convention.
def RetCC_X86_32_Fast : CallingConv<[
// The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
// SSE2, otherwise it is the the C calling conventions.
// This can happen when a float, 2 x float, or 3 x float vector is split by
// target lowering, and is returned in 1-3 sse regs.
CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-64 C return-value convention.
def RetCC_X86_64_C : CallingConv<[
// The X86-64 calling convention always returns FP values in XMM0.
CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
// MMX vector types are always returned in XMM0.
CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToReg<[XMM0, XMM1]>>,
CCDelegateTo<RetCC_X86Common>
]>;
// X86-Win64 C return-value convention.
def RetCC_X86_Win64_C : CallingConv<[
// The X86-Win64 calling convention always returns __m64 values in RAX.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToReg<[RAX]>>,
// And FP in XMM0 only.
CCIfType<[f32], CCAssignToReg<[XMM0]>>,
CCIfType<[f64], CCAssignToReg<[XMM0]>>,
// Otherwise, everything is the same as 'normal' X86-64 C CC.
CCDelegateTo<RetCC_X86_64_C>
]>;
// This is the root return-value convention for the X86-32 backend.
def RetCC_X86_32 : CallingConv<[
// If FastCC, use RetCC_X86_32_Fast.
CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
// Otherwise, use RetCC_X86_32_C.
CCDelegateTo<RetCC_X86_32_C>
]>;
// This is the root return-value convention for the X86-64 backend.
def RetCC_X86_64 : CallingConv<[
// Mingw64 and native Win64 use Win64 CC
CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
// Otherwise, drop to normal X86-64 CC
CCDelegateTo<RetCC_X86_64_C>
]>;
// This is the return-value convention used for the entire X86 backend.
def RetCC_X86 : CallingConv<[
CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
CCDelegateTo<RetCC_X86_32>
]>;
//===----------------------------------------------------------------------===//
// X86-64 Argument Calling Conventions
//===----------------------------------------------------------------------===//
def CC_X86_64_C : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<8, 8>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
// The first 8 MMX (except for v1i64) vector arguments are passed in XMM
// registers on Darwin.
CCIfType<[v8i8, v4i16, v2i32, v2f32],
CCIfSubtarget<"isTargetDarwin()",
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>>,
// The first 8 v1i64 vector arguments are passed in GPRs on Darwin.
CCIfType<[v1i64],
CCIfSubtarget<"isTargetDarwin()",
CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 8-byte aligned.
CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32], CCAssignToStack<8, 8>>
]>;
// Calling convention used on Win64
def CC_X86_Win64_C : CallingConv<[
// FIXME: Handle byval stuff.
// FIXME: Handle varargs.
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// The first 4 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
[XMM0, XMM1, XMM2, XMM3]>>,
CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
[XMM0, XMM1, XMM2, XMM3]>>,
// The first 4 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
[RCX , RDX , R8 , R9 ]>>,
// The first 4 MMX vector arguments are passed in GPRs.
CCIfType<[v8i8, v4i16, v2i32, v1i64, v2f32],
CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
[XMM0, XMM1, XMM2, XMM3]>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 16-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 16>>,
// Long doubles get stack slots whose size and alignment depends on the
// subtarget.
CCIfType<[f80], CCAssignToStack<0, 0>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 16-byte aligned.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 16>>
]>;
// Tail call convention (fast): One register is reserved for target address,
// namely R9
def CC_X86_64_TailCall : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<8, 8>>,
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in R10.
CCIfNest<CCAssignToReg<[R10]>>,
// The first 6 integer arguments are passed in integer registers.
CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D]>>,
CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>,
// The first 8 FP/Vector arguments are passed in XMM registers.
CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>,
// The first 8 MMX (except for v1i64) vector arguments are passed in XMM
// registers on Darwin.
CCIfType<[v8i8, v4i16, v2i32, v2f32],
CCIfSubtarget<"isTargetDarwin()",
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
// The first 8 v1i64 vector arguments are passed in GPRs on Darwin.
CCIfType<[v1i64],
CCIfSubtarget<"isTargetDarwin()",
CCAssignToReg<[RDI, RSI, RDX, RCX, R8]>>>,
// Integer/FP values get stored in stack slots that are 8 bytes in size and
// 8-byte aligned if there are no more registers to hold them.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 8-byte aligned.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 8>>
]>;
//===----------------------------------------------------------------------===//
// X86 C Calling Convention
//===----------------------------------------------------------------------===//
/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
/// values are spilled on the stack, and the first 4 vector values go in XMM
/// regs.
def CC_X86_32_Common : CallingConv<[
// Handles byval parameters.
CCIfByVal<CCPassByVal<4, 4>>,
// The first 3 float or double arguments, if marked 'inreg' and if the call
// is not a vararg call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
// The first 3 __m64 (except for v1i64) vector arguments are passed in mmx
// registers if the call is not a vararg call.
CCIfNotVarArg<CCIfType<[v8i8, v4i16, v2i32, v2f32],
CCAssignToReg<[MM0, MM1, MM2]>>>,
// Integer/Float values get stored in stack slots that are 4 bytes in
// size and 4-byte aligned.
CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
// Doubles get 8-byte slots that are 4-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 4>>,
// Long doubles get slots whose size depends on the subtarget.
CCIfType<[f80], CCAssignToStack<0, 4>>,
// The first 4 SSE vector arguments are passed in XMM registers.
CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
// Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
// __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
// passed in the parameter area.
CCIfType<[v8i8, v4i16, v2i32, v1i64], CCAssignToStack<8, 4>>]>;
def CC_X86_32_C : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in ECX.
CCIfNest<CCAssignToReg<[ECX]>>,
// The first 3 integer arguments, if marked 'inreg' and if the call is not
// a vararg call, are passed in integer registers.
CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_FastCall : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;
def CC_X86_32_FastCC : CallingConv<[
// Promote i8/i16 arguments to i32.
CCIfType<[i8, i16], CCPromoteToType<i32>>,
// The 'nest' parameter, if any, is passed in EAX.
CCIfNest<CCAssignToReg<[EAX]>>,
// The first 2 integer arguments are passed in ECX/EDX
CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
// The first 3 float or double arguments, if the call is not a vararg
// call and if SSE2 is available, are passed in SSE registers.
CCIfNotVarArg<CCIfType<[f32,f64],
CCIfSubtarget<"hasSSE2()",
CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
// Doubles get 8-byte slots that are 8-byte aligned.
CCIfType<[f64], CCAssignToStack<8, 8>>,
// Otherwise, same as everything else.
CCDelegateTo<CC_X86_32_Common>
]>;