llvm-6502/include/llvm/Support/MathExtras.h

259 lines
8.0 KiB
C
Raw Normal View History

//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful for math stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_MATHEXTRAS_H
#define LLVM_SUPPORT_MATHEXTRAS_H
#include "llvm/Support/DataTypes.h"
namespace llvm {
// NOTE: The following support functions use the _32/_64 extensions instead of
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
// Hi_32 - This function returns the high 32 bits of a 64 bit value.
inline unsigned Hi_32(uint64_t Value) {
return (unsigned)(Value >> 32);
}
// Lo_32 - This function returns the low 32 bits of a 64 bit value.
inline unsigned Lo_32(uint64_t Value) {
return (unsigned)Value;
}
// is?Type - these functions produce optimal testing for integer data types.
inline bool isInt8 (int Value) { return ( signed char )Value == Value; }
inline bool isUInt8 (int Value) { return (unsigned char )Value == Value; }
inline bool isInt16 (int Value) { return ( signed short)Value == Value; }
inline bool isUInt16(int Value) { return (unsigned short)Value == Value; }
inline bool isInt32 (int64_t Value) { return ( signed int )Value == Value; }
inline bool isUInt32(int64_t Value) { return (unsigned int )Value == Value; }
// isMask_32 - This function returns true if the argument is a sequence of ones
// starting at the least significant bit with the remainder zero (32 bit version.)
// Ex. isMask_32(0x0000FFFFU) == true.
inline const bool isMask_32(unsigned Value) {
return Value && ((Value + 1) & Value) == 0;
}
// isMask_64 - This function returns true if the argument is a sequence of ones
// starting at the least significant bit with the remainder zero (64 bit version.)
inline const bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
// isShiftedMask_32 - This function returns true if the argument contains a
// sequence of ones with the remainder zero (32 bit version.)
// Ex. isShiftedMask_32(0x0000FF00U) == true.
inline const bool isShiftedMask_32(unsigned Value) {
return isMask_32((Value - 1) | Value);
}
// isShiftedMask_64 - This function returns true if the argument contains a
// sequence of ones with the remainder zero (64 bit version.)
inline const bool isShiftedMask_64(uint64_t Value) {
return isMask_64((Value - 1) | Value);
}
// isPowerOf2_32 - This function returns true if the argument is a power of
// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
inline bool isPowerOf2_32(unsigned Value) {
return Value && !(Value & (Value - 1));
}
// isPowerOf2_64 - This function returns true if the argument is a power of two
// > 0 (64 bit edition.)
inline bool isPowerOf2_64(uint64_t Value) {
return Value && !(Value & (Value - 1LL));
}
// CountLeadingZeros_32 - this function performs the platform optimal form of
// counting the number of zeros from the most significant bit to the first one
// bit. Ex. CountLeadingZeros_32(0x00F000FF) == 8.
// Returns 32 if the word is zero.
inline unsigned CountLeadingZeros_32(unsigned Value) {
unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clz(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 32;
#endif
Count = __builtin_clz(Value);
#else
if (!Value) return 32;
Count = 0;
// bisecton method for count leading zeros
for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
unsigned Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
} else {
Count |= Shift;
}
}
#endif
return Count;
}
// CountLeadingZeros_64 - This function performs the platform optimal form
// of counting the number of zeros from the most significant bit to the first
// one bit (64 bit edition.)
// Returns 64 if the word is zero.
inline unsigned CountLeadingZeros_64(uint64_t Value) {
unsigned Count; // result
#if __GNUC__ >= 4
// PowerPC is defined for __builtin_clzll(0)
#if !defined(__ppc__) && !defined(__ppc64__)
if (!Value) return 64;
#endif
Count = __builtin_clzll(Value);
#else
if (sizeof(long) == sizeof(int64_t)) {
if (!Value) return 64;
Count = 0;
// bisecton method for count leading zeros
for (uint64_t Shift = 64 >> 1; Shift; Shift >>= 1) {
uint64_t Tmp = Value >> Shift;
if (Tmp) {
Value = Tmp;
} else {
Count |= Shift;
}
}
} else {
// get hi portion
unsigned Hi = Hi_32(Value);
// if some bits in hi portion
if (Hi) {
// leading zeros in hi portion plus all bits in lo portion
Count = CountLeadingZeros_32(Hi);
} else {
// get lo portion
unsigned Lo = Lo_32(Value);
// same as 32 bit value
Count = CountLeadingZeros_32(Lo)+32;
}
}
#endif
return Count;
}
// CountTrailingZeros_32 - this function performs the platform optimal form of
// counting the number of zeros from the least significant bit to the first one
// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
// Returns 32 if the word is zero.
inline unsigned CountTrailingZeros_32(unsigned Value) {
return 32 - CountLeadingZeros_32(~Value & (Value - 1));
}
// CountTrailingZeros_64 - This function performs the platform optimal form
// of counting the number of zeros from the least significant bit to the first
// one bit (64 bit edition.)
// Returns 64 if the word is zero.
inline unsigned CountTrailingZeros_64(uint64_t Value) {
return 64 - CountLeadingZeros_64(~Value & (Value - 1));
}
// CountPopulation_32 - this function counts the number of set bits in a value.
// Ex. CountPopulation(0xF000F000) = 8
// Returns 0 if the word is zero.
inline unsigned CountPopulation_32(unsigned Value) {
unsigned x, t;
x = Value - ((Value >> 1) & 0x55555555);
t = ((x >> 2) & 0x33333333);
x = (x & 0x33333333) + t;
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x << 8);
x = x + (x << 16);
return x >> 24;
}
// CountPopulation_64 - this function counts the number of set bits in a value,
// (64 bit edition.)
inline unsigned CountPopulation_64(uint64_t Value) {
return CountPopulation_32(unsigned(Value >> 32)) +
CountPopulation_32(unsigned(Value));
}
// Log2_32 - This function returns the floor log base 2 of the specified value,
// -1 if the value is zero. (32 bit edition.)
// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1
inline unsigned Log2_32(unsigned Value) {
return 31 - CountLeadingZeros_32(Value);
}
// Log2_64 - This function returns the floor log base 2 of the specified value,
// -1 if the value is zero. (64 bit edition.)
inline unsigned Log2_64(uint64_t Value) {
return 63 - CountLeadingZeros_64(Value);
}
// BitsToDouble - This function takes a 64-bit integer and returns the bit
// equivalent double.
inline double BitsToDouble(uint64_t Bits) {
union {
uint64_t L;
double D;
} T;
T.L = Bits;
return T.D;
}
// BitsToFloat - This function takes a 32-bit integer and returns the bit
// equivalent float.
inline float BitsToFloat(uint32_t Bits) {
union {
uint32_t I;
float F;
} T;
T.I = Bits;
return T.F;
}
// DoubleToBits - This function takes a double and returns the bit
// equivalent 64-bit integer.
inline uint64_t DoubleToBits(double Double) {
union {
uint64_t L;
double D;
} T;
T.D = Double;
return T.L;
}
// FloatToBits - This function takes a float and returns the bit
// equivalent 32-bit integer.
inline uint32_t FloatToBits(float Float) {
union {
uint32_t I;
float F;
} T;
T.F = Float;
return T.I;
}
// Platform-independent wrappers for the C99 isnan() function.
int IsNAN (float f);
int IsNAN (double d);
// Platform-independent wrappers for the C99 isinf() function.
int IsInf (float f);
int IsInf (double d);
} // End llvm namespace
#endif