2004-04-02 20:23:17 +00:00
|
|
|
//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
|
2005-04-21 21:13:18 +00:00
|
|
|
//
|
2004-04-02 20:23:17 +00:00
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
2005-04-21 21:13:18 +00:00
|
|
|
//
|
2004-04-02 20:23:17 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file contains the implementation of the scalar evolution analysis
|
|
|
|
// engine, which is used primarily to analyze expressions involving induction
|
|
|
|
// variables in loops.
|
|
|
|
//
|
|
|
|
// There are several aspects to this library. First is the representation of
|
|
|
|
// scalar expressions, which are represented as subclasses of the SCEV class.
|
|
|
|
// These classes are used to represent certain types of subexpressions that we
|
|
|
|
// can handle. These classes are reference counted, managed by the SCEVHandle
|
|
|
|
// class. We only create one SCEV of a particular shape, so pointer-comparisons
|
|
|
|
// for equality are legal.
|
|
|
|
//
|
|
|
|
// One important aspect of the SCEV objects is that they are never cyclic, even
|
|
|
|
// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
|
|
|
|
// the PHI node is one of the idioms that we can represent (e.g., a polynomial
|
|
|
|
// recurrence) then we represent it directly as a recurrence node, otherwise we
|
|
|
|
// represent it as a SCEVUnknown node.
|
|
|
|
//
|
|
|
|
// In addition to being able to represent expressions of various types, we also
|
|
|
|
// have folders that are used to build the *canonical* representation for a
|
|
|
|
// particular expression. These folders are capable of using a variety of
|
|
|
|
// rewrite rules to simplify the expressions.
|
2005-04-21 21:13:18 +00:00
|
|
|
//
|
2004-04-02 20:23:17 +00:00
|
|
|
// Once the folders are defined, we can implement the more interesting
|
|
|
|
// higher-level code, such as the code that recognizes PHI nodes of various
|
|
|
|
// types, computes the execution count of a loop, etc.
|
|
|
|
//
|
|
|
|
// TODO: We should use these routines and value representations to implement
|
|
|
|
// dependence analysis!
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// There are several good references for the techniques used in this analysis.
|
|
|
|
//
|
|
|
|
// Chains of recurrences -- a method to expedite the evaluation
|
|
|
|
// of closed-form functions
|
|
|
|
// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
|
|
|
|
//
|
|
|
|
// On computational properties of chains of recurrences
|
|
|
|
// Eugene V. Zima
|
|
|
|
//
|
|
|
|
// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
|
|
|
|
// Robert A. van Engelen
|
|
|
|
//
|
|
|
|
// Efficient Symbolic Analysis for Optimizing Compilers
|
|
|
|
// Robert A. van Engelen
|
|
|
|
//
|
|
|
|
// Using the chains of recurrences algebra for data dependence testing and
|
|
|
|
// induction variable substitution
|
|
|
|
// MS Thesis, Johnie Birch
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
2004-04-02 20:23:17 +00:00
|
|
|
#include "llvm/Constants.h"
|
|
|
|
#include "llvm/DerivedTypes.h"
|
This nutty patch has been in my tree since before 1.3 went out, and it needs
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16926 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-12 01:49:27 +00:00
|
|
|
#include "llvm/GlobalVariable.h"
|
2004-04-02 20:23:17 +00:00
|
|
|
#include "llvm/Instructions.h"
|
2005-10-27 15:54:34 +00:00
|
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
2004-04-02 20:23:17 +00:00
|
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
|
|
#include "llvm/Assembly/Writer.h"
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
|
|
#include "llvm/Support/CFG.h"
|
|
|
|
#include "llvm/Support/ConstantRange.h"
|
|
|
|
#include "llvm/Support/InstIterator.h"
|
2004-09-01 22:55:40 +00:00
|
|
|
#include "llvm/Support/CommandLine.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
2004-04-16 15:57:32 +00:00
|
|
|
#include <cmath>
|
2006-01-22 23:19:18 +00:00
|
|
|
#include <iostream>
|
2004-09-03 18:19:51 +00:00
|
|
|
#include <algorithm>
|
2004-04-02 20:23:17 +00:00
|
|
|
using namespace llvm;
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
RegisterAnalysis<ScalarEvolution>
|
2004-04-19 03:42:32 +00:00
|
|
|
R("scalar-evolution", "Scalar Evolution Analysis");
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
Statistic<>
|
|
|
|
NumBruteForceEvaluations("scalar-evolution",
|
This nutty patch has been in my tree since before 1.3 went out, and it needs
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16926 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-12 01:49:27 +00:00
|
|
|
"Number of brute force evaluations needed to "
|
|
|
|
"calculate high-order polynomial exit values");
|
|
|
|
Statistic<>
|
|
|
|
NumArrayLenItCounts("scalar-evolution",
|
|
|
|
"Number of trip counts computed with array length");
|
2004-04-02 20:23:17 +00:00
|
|
|
Statistic<>
|
|
|
|
NumTripCountsComputed("scalar-evolution",
|
|
|
|
"Number of loops with predictable loop counts");
|
|
|
|
Statistic<>
|
|
|
|
NumTripCountsNotComputed("scalar-evolution",
|
|
|
|
"Number of loops without predictable loop counts");
|
2004-04-17 18:36:24 +00:00
|
|
|
Statistic<>
|
|
|
|
NumBruteForceTripCountsComputed("scalar-evolution",
|
|
|
|
"Number of loops with trip counts computed by force");
|
|
|
|
|
|
|
|
cl::opt<unsigned>
|
|
|
|
MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
|
2005-09-28 22:30:58 +00:00
|
|
|
cl::desc("Maximum number of iterations SCEV will "
|
|
|
|
"symbolically execute a constant derived loop"),
|
2004-04-17 18:36:24 +00:00
|
|
|
cl::init(100));
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// SCEV class definitions
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Implementation of the SCEV class.
|
|
|
|
//
|
|
|
|
SCEV::~SCEV() {}
|
|
|
|
void SCEV::dump() const {
|
|
|
|
print(std::cerr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getValueRange - Return the tightest constant bounds that this value is
|
|
|
|
/// known to have. This method is only valid on integer SCEV objects.
|
|
|
|
ConstantRange SCEV::getValueRange() const {
|
|
|
|
const Type *Ty = getType();
|
|
|
|
assert(Ty->isInteger() && "Can't get range for a non-integer SCEV!");
|
|
|
|
Ty = Ty->getUnsignedVersion();
|
|
|
|
// Default to a full range if no better information is available.
|
|
|
|
return ConstantRange(getType());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
|
|
|
|
|
|
|
|
bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
|
|
|
|
assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
|
2004-04-05 19:00:46 +00:00
|
|
|
return false;
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
const Type *SCEVCouldNotCompute::getType() const {
|
|
|
|
assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
|
2004-04-05 19:00:46 +00:00
|
|
|
return 0;
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
|
|
|
|
assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2005-02-13 04:37:18 +00:00
|
|
|
SCEVHandle SCEVCouldNotCompute::
|
|
|
|
replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
|
|
|
|
const SCEVHandle &Conc) const {
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
void SCEVCouldNotCompute::print(std::ostream &OS) const {
|
|
|
|
OS << "***COULDNOTCOMPUTE***";
|
|
|
|
}
|
|
|
|
|
|
|
|
bool SCEVCouldNotCompute::classof(const SCEV *S) {
|
|
|
|
return S->getSCEVType() == scCouldNotCompute;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
// SCEVConstants - Only allow the creation of one SCEVConstant for any
|
|
|
|
// particular value. Don't use a SCEVHandle here, or else the object will
|
|
|
|
// never be deleted!
|
|
|
|
static std::map<ConstantInt*, SCEVConstant*> SCEVConstants;
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVConstant::~SCEVConstant() {
|
|
|
|
SCEVConstants.erase(V);
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVHandle SCEVConstant::get(ConstantInt *V) {
|
|
|
|
// Make sure that SCEVConstant instances are all unsigned.
|
|
|
|
if (V->getType()->isSigned()) {
|
|
|
|
const Type *NewTy = V->getType()->getUnsignedVersion();
|
|
|
|
V = cast<ConstantUInt>(ConstantExpr::getCast(V, NewTy));
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVConstant *&R = SCEVConstants[V];
|
|
|
|
if (R == 0) R = new SCEVConstant(V);
|
|
|
|
return R;
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
ConstantRange SCEVConstant::getValueRange() const {
|
|
|
|
return ConstantRange(V);
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
const Type *SCEVConstant::getType() const { return V->getType(); }
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
void SCEVConstant::print(std::ostream &OS) const {
|
|
|
|
WriteAsOperand(OS, V, false);
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
|
|
|
|
// particular input. Don't use a SCEVHandle here, or else the object will
|
|
|
|
// never be deleted!
|
|
|
|
static std::map<std::pair<SCEV*, const Type*>, SCEVTruncateExpr*> SCEVTruncates;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
|
|
|
|
: SCEV(scTruncate), Op(op), Ty(ty) {
|
|
|
|
assert(Op->getType()->isInteger() && Ty->isInteger() &&
|
|
|
|
Ty->isUnsigned() &&
|
|
|
|
"Cannot truncate non-integer value!");
|
|
|
|
assert(Op->getType()->getPrimitiveSize() > Ty->getPrimitiveSize() &&
|
|
|
|
"This is not a truncating conversion!");
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVTruncateExpr::~SCEVTruncateExpr() {
|
|
|
|
SCEVTruncates.erase(std::make_pair(Op, Ty));
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
ConstantRange SCEVTruncateExpr::getValueRange() const {
|
|
|
|
return getOperand()->getValueRange().truncate(getType());
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
void SCEVTruncateExpr::print(std::ostream &OS) const {
|
|
|
|
OS << "(truncate " << *Op << " to " << *Ty << ")";
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
|
|
|
|
// particular input. Don't use a SCEVHandle here, or else the object will never
|
|
|
|
// be deleted!
|
|
|
|
static std::map<std::pair<SCEV*, const Type*>,
|
|
|
|
SCEVZeroExtendExpr*> SCEVZeroExtends;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
|
2005-02-17 16:54:16 +00:00
|
|
|
: SCEV(scTruncate), Op(op), Ty(ty) {
|
2004-04-15 15:07:24 +00:00
|
|
|
assert(Op->getType()->isInteger() && Ty->isInteger() &&
|
|
|
|
Ty->isUnsigned() &&
|
|
|
|
"Cannot zero extend non-integer value!");
|
|
|
|
assert(Op->getType()->getPrimitiveSize() < Ty->getPrimitiveSize() &&
|
|
|
|
"This is not an extending conversion!");
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
|
|
|
|
SCEVZeroExtends.erase(std::make_pair(Op, Ty));
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
ConstantRange SCEVZeroExtendExpr::getValueRange() const {
|
|
|
|
return getOperand()->getValueRange().zeroExtend(getType());
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
void SCEVZeroExtendExpr::print(std::ostream &OS) const {
|
|
|
|
OS << "(zeroextend " << *Op << " to " << *Ty << ")";
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
|
|
|
|
// particular input. Don't use a SCEVHandle here, or else the object will never
|
|
|
|
// be deleted!
|
|
|
|
static std::map<std::pair<unsigned, std::vector<SCEV*> >,
|
|
|
|
SCEVCommutativeExpr*> SCEVCommExprs;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVCommutativeExpr::~SCEVCommutativeExpr() {
|
|
|
|
SCEVCommExprs.erase(std::make_pair(getSCEVType(),
|
|
|
|
std::vector<SCEV*>(Operands.begin(),
|
|
|
|
Operands.end())));
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
void SCEVCommutativeExpr::print(std::ostream &OS) const {
|
|
|
|
assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
|
|
|
|
const char *OpStr = getOperationStr();
|
|
|
|
OS << "(" << *Operands[0];
|
|
|
|
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
|
|
|
|
OS << OpStr << *Operands[i];
|
|
|
|
OS << ")";
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2005-02-13 04:37:18 +00:00
|
|
|
SCEVHandle SCEVCommutativeExpr::
|
|
|
|
replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
|
|
|
|
const SCEVHandle &Conc) const {
|
|
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
|
|
SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
|
|
|
|
if (H != getOperand(i)) {
|
|
|
|
std::vector<SCEVHandle> NewOps;
|
|
|
|
NewOps.reserve(getNumOperands());
|
|
|
|
for (unsigned j = 0; j != i; ++j)
|
|
|
|
NewOps.push_back(getOperand(j));
|
|
|
|
NewOps.push_back(H);
|
|
|
|
for (++i; i != e; ++i)
|
|
|
|
NewOps.push_back(getOperand(i)->
|
|
|
|
replaceSymbolicValuesWithConcrete(Sym, Conc));
|
|
|
|
|
|
|
|
if (isa<SCEVAddExpr>(this))
|
|
|
|
return SCEVAddExpr::get(NewOps);
|
|
|
|
else if (isa<SCEVMulExpr>(this))
|
|
|
|
return SCEVMulExpr::get(NewOps);
|
|
|
|
else
|
|
|
|
assert(0 && "Unknown commutative expr!");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
|
|
|
|
// input. Don't use a SCEVHandle here, or else the object will never be
|
|
|
|
// deleted!
|
|
|
|
static std::map<std::pair<SCEV*, SCEV*>, SCEVUDivExpr*> SCEVUDivs;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVUDivExpr::~SCEVUDivExpr() {
|
|
|
|
SCEVUDivs.erase(std::make_pair(LHS, RHS));
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
void SCEVUDivExpr::print(std::ostream &OS) const {
|
|
|
|
OS << "(" << *LHS << " /u " << *RHS << ")";
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
const Type *SCEVUDivExpr::getType() const {
|
|
|
|
const Type *Ty = LHS->getType();
|
|
|
|
if (Ty->isSigned()) Ty = Ty->getUnsignedVersion();
|
|
|
|
return Ty;
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
|
|
|
|
// particular input. Don't use a SCEVHandle here, or else the object will never
|
|
|
|
// be deleted!
|
|
|
|
static std::map<std::pair<const Loop *, std::vector<SCEV*> >,
|
|
|
|
SCEVAddRecExpr*> SCEVAddRecExprs;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVAddRecExpr::~SCEVAddRecExpr() {
|
|
|
|
SCEVAddRecExprs.erase(std::make_pair(L,
|
|
|
|
std::vector<SCEV*>(Operands.begin(),
|
|
|
|
Operands.end())));
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2005-02-13 04:37:18 +00:00
|
|
|
SCEVHandle SCEVAddRecExpr::
|
|
|
|
replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
|
|
|
|
const SCEVHandle &Conc) const {
|
|
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
|
|
|
|
SCEVHandle H = getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc);
|
|
|
|
if (H != getOperand(i)) {
|
|
|
|
std::vector<SCEVHandle> NewOps;
|
|
|
|
NewOps.reserve(getNumOperands());
|
|
|
|
for (unsigned j = 0; j != i; ++j)
|
|
|
|
NewOps.push_back(getOperand(j));
|
|
|
|
NewOps.push_back(H);
|
|
|
|
for (++i; i != e; ++i)
|
|
|
|
NewOps.push_back(getOperand(i)->
|
|
|
|
replaceSymbolicValuesWithConcrete(Sym, Conc));
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2005-02-13 04:37:18 +00:00
|
|
|
return get(NewOps, L);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return this;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
|
|
|
|
// This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
|
2005-08-16 00:37:01 +00:00
|
|
|
// contain L and if the start is invariant.
|
|
|
|
return !QueryLoop->contains(L->getHeader()) &&
|
|
|
|
getOperand(0)->isLoopInvariant(QueryLoop);
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
void SCEVAddRecExpr::print(std::ostream &OS) const {
|
|
|
|
OS << "{" << *Operands[0];
|
|
|
|
for (unsigned i = 1, e = Operands.size(); i != e; ++i)
|
|
|
|
OS << ",+," << *Operands[i];
|
|
|
|
OS << "}<" << L->getHeader()->getName() + ">";
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
|
|
|
|
// value. Don't use a SCEVHandle here, or else the object will never be
|
|
|
|
// deleted!
|
|
|
|
static std::map<Value*, SCEVUnknown*> SCEVUnknowns;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVUnknown::~SCEVUnknown() { SCEVUnknowns.erase(V); }
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
|
|
|
|
// All non-instruction values are loop invariant. All instructions are loop
|
|
|
|
// invariant if they are not contained in the specified loop.
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
|
|
return !L->contains(I->getParent());
|
|
|
|
return true;
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
const Type *SCEVUnknown::getType() const {
|
|
|
|
return V->getType();
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
void SCEVUnknown::print(std::ostream &OS) const {
|
|
|
|
WriteAsOperand(OS, V, false);
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2004-06-20 06:23:15 +00:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// SCEV Utilities
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
|
|
|
|
/// than the complexity of the RHS. This comparator is used to canonicalize
|
|
|
|
/// expressions.
|
|
|
|
struct SCEVComplexityCompare {
|
|
|
|
bool operator()(SCEV *LHS, SCEV *RHS) {
|
|
|
|
return LHS->getSCEVType() < RHS->getSCEVType();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
/// GroupByComplexity - Given a list of SCEV objects, order them by their
|
|
|
|
/// complexity, and group objects of the same complexity together by value.
|
|
|
|
/// When this routine is finished, we know that any duplicates in the vector are
|
|
|
|
/// consecutive and that complexity is monotonically increasing.
|
|
|
|
///
|
|
|
|
/// Note that we go take special precautions to ensure that we get determinstic
|
|
|
|
/// results from this routine. In other words, we don't want the results of
|
|
|
|
/// this to depend on where the addresses of various SCEV objects happened to
|
|
|
|
/// land in memory.
|
|
|
|
///
|
|
|
|
static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
|
|
|
|
if (Ops.size() < 2) return; // Noop
|
|
|
|
if (Ops.size() == 2) {
|
|
|
|
// This is the common case, which also happens to be trivially simple.
|
|
|
|
// Special case it.
|
|
|
|
if (Ops[0]->getSCEVType() > Ops[1]->getSCEVType())
|
|
|
|
std::swap(Ops[0], Ops[1]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do the rough sort by complexity.
|
|
|
|
std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
|
|
|
|
|
|
|
|
// Now that we are sorted by complexity, group elements of the same
|
|
|
|
// complexity. Note that this is, at worst, N^2, but the vector is likely to
|
|
|
|
// be extremely short in practice. Note that we take this approach because we
|
|
|
|
// do not want to depend on the addresses of the objects we are grouping.
|
2004-06-20 17:01:44 +00:00
|
|
|
for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
|
2004-06-20 06:23:15 +00:00
|
|
|
SCEV *S = Ops[i];
|
|
|
|
unsigned Complexity = S->getSCEVType();
|
|
|
|
|
|
|
|
// If there are any objects of the same complexity and same value as this
|
|
|
|
// one, group them.
|
|
|
|
for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
|
|
|
|
if (Ops[j] == S) { // Found a duplicate.
|
|
|
|
// Move it to immediately after i'th element.
|
|
|
|
std::swap(Ops[i+1], Ops[j]);
|
|
|
|
++i; // no need to rescan it.
|
2004-06-20 20:32:16 +00:00
|
|
|
if (i == e-2) return; // Done!
|
2004-06-20 06:23:15 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Simple SCEV method implementations
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// getIntegerSCEV - Given an integer or FP type, create a constant for the
|
|
|
|
/// specified signed integer value and return a SCEV for the constant.
|
2004-04-23 21:29:03 +00:00
|
|
|
SCEVHandle SCEVUnknown::getIntegerSCEV(int Val, const Type *Ty) {
|
2004-04-02 20:23:17 +00:00
|
|
|
Constant *C;
|
2005-04-21 21:13:18 +00:00
|
|
|
if (Val == 0)
|
2004-04-02 20:23:17 +00:00
|
|
|
C = Constant::getNullValue(Ty);
|
|
|
|
else if (Ty->isFloatingPoint())
|
|
|
|
C = ConstantFP::get(Ty, Val);
|
|
|
|
else if (Ty->isSigned())
|
|
|
|
C = ConstantSInt::get(Ty, Val);
|
|
|
|
else {
|
|
|
|
C = ConstantSInt::get(Ty->getSignedVersion(), Val);
|
|
|
|
C = ConstantExpr::getCast(C, Ty);
|
|
|
|
}
|
|
|
|
return SCEVUnknown::get(C);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
|
|
|
|
/// input value to the specified type. If the type must be extended, it is zero
|
|
|
|
/// extended.
|
|
|
|
static SCEVHandle getTruncateOrZeroExtend(const SCEVHandle &V, const Type *Ty) {
|
|
|
|
const Type *SrcTy = V->getType();
|
|
|
|
assert(SrcTy->isInteger() && Ty->isInteger() &&
|
|
|
|
"Cannot truncate or zero extend with non-integer arguments!");
|
|
|
|
if (SrcTy->getPrimitiveSize() == Ty->getPrimitiveSize())
|
|
|
|
return V; // No conversion
|
|
|
|
if (SrcTy->getPrimitiveSize() > Ty->getPrimitiveSize())
|
|
|
|
return SCEVTruncateExpr::get(V, Ty);
|
|
|
|
return SCEVZeroExtendExpr::get(V, Ty);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
|
|
|
|
///
|
2005-03-09 05:34:41 +00:00
|
|
|
SCEVHandle SCEV::getNegativeSCEV(const SCEVHandle &V) {
|
2004-04-02 20:23:17 +00:00
|
|
|
if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
|
|
|
|
return SCEVUnknown::get(ConstantExpr::getNeg(VC->getValue()));
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-23 21:29:03 +00:00
|
|
|
return SCEVMulExpr::get(V, SCEVUnknown::getIntegerSCEV(-1, V->getType()));
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
|
|
|
|
///
|
2005-03-09 05:34:41 +00:00
|
|
|
SCEVHandle SCEV::getMinusSCEV(const SCEVHandle &LHS, const SCEVHandle &RHS) {
|
2004-04-02 20:23:17 +00:00
|
|
|
// X - Y --> X + -Y
|
2005-03-09 05:34:41 +00:00
|
|
|
return SCEVAddExpr::get(LHS, SCEV::getNegativeSCEV(RHS));
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// PartialFact - Compute V!/(V-NumSteps)!
|
|
|
|
static SCEVHandle PartialFact(SCEVHandle V, unsigned NumSteps) {
|
|
|
|
// Handle this case efficiently, it is common to have constant iteration
|
|
|
|
// counts while computing loop exit values.
|
|
|
|
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(V)) {
|
|
|
|
uint64_t Val = SC->getValue()->getRawValue();
|
|
|
|
uint64_t Result = 1;
|
|
|
|
for (; NumSteps; --NumSteps)
|
|
|
|
Result *= Val-(NumSteps-1);
|
|
|
|
Constant *Res = ConstantUInt::get(Type::ULongTy, Result);
|
|
|
|
return SCEVUnknown::get(ConstantExpr::getCast(Res, V->getType()));
|
|
|
|
}
|
|
|
|
|
|
|
|
const Type *Ty = V->getType();
|
|
|
|
if (NumSteps == 0)
|
2004-04-23 21:29:03 +00:00
|
|
|
return SCEVUnknown::getIntegerSCEV(1, Ty);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle Result = V;
|
|
|
|
for (unsigned i = 1; i != NumSteps; ++i)
|
2005-03-09 05:34:41 +00:00
|
|
|
Result = SCEVMulExpr::get(Result, SCEV::getMinusSCEV(V,
|
2004-04-23 21:29:03 +00:00
|
|
|
SCEVUnknown::getIntegerSCEV(i, Ty)));
|
2004-04-02 20:23:17 +00:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// evaluateAtIteration - Return the value of this chain of recurrences at
|
|
|
|
/// the specified iteration number. We can evaluate this recurrence by
|
|
|
|
/// multiplying each element in the chain by the binomial coefficient
|
|
|
|
/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
|
|
|
|
///
|
|
|
|
/// A*choose(It, 0) + B*choose(It, 1) + C*choose(It, 2) + D*choose(It, 3)
|
|
|
|
///
|
|
|
|
/// FIXME/VERIFY: I don't trust that this is correct in the face of overflow.
|
|
|
|
/// Is the binomial equation safe using modular arithmetic??
|
|
|
|
///
|
|
|
|
SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It) const {
|
|
|
|
SCEVHandle Result = getStart();
|
|
|
|
int Divisor = 1;
|
|
|
|
const Type *Ty = It->getType();
|
|
|
|
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
|
|
|
|
SCEVHandle BC = PartialFact(It, i);
|
|
|
|
Divisor *= i;
|
|
|
|
SCEVHandle Val = SCEVUDivExpr::get(SCEVMulExpr::get(BC, getOperand(i)),
|
2004-04-23 21:29:03 +00:00
|
|
|
SCEVUnknown::getIntegerSCEV(Divisor,Ty));
|
2004-04-02 20:23:17 +00:00
|
|
|
Result = SCEVAddExpr::get(Result, Val);
|
|
|
|
}
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// SCEV Expression folder implementations
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
SCEVHandle SCEVTruncateExpr::get(const SCEVHandle &Op, const Type *Ty) {
|
|
|
|
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
|
|
|
|
return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
|
|
|
|
|
|
|
|
// If the input value is a chrec scev made out of constants, truncate
|
|
|
|
// all of the constants.
|
|
|
|
if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
|
|
|
|
std::vector<SCEVHandle> Operands;
|
|
|
|
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
|
|
|
|
// FIXME: This should allow truncation of other expression types!
|
|
|
|
if (isa<SCEVConstant>(AddRec->getOperand(i)))
|
|
|
|
Operands.push_back(get(AddRec->getOperand(i), Ty));
|
|
|
|
else
|
|
|
|
break;
|
|
|
|
if (Operands.size() == AddRec->getNumOperands())
|
|
|
|
return SCEVAddRecExpr::get(Operands, AddRec->getLoop());
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVTruncateExpr *&Result = SCEVTruncates[std::make_pair(Op, Ty)];
|
|
|
|
if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVHandle SCEVZeroExtendExpr::get(const SCEVHandle &Op, const Type *Ty) {
|
|
|
|
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
|
|
|
|
return SCEVUnknown::get(ConstantExpr::getCast(SC->getValue(), Ty));
|
|
|
|
|
|
|
|
// FIXME: If the input value is a chrec scev, and we can prove that the value
|
|
|
|
// did not overflow the old, smaller, value, we can zero extend all of the
|
|
|
|
// operands (often constants). This would allow analysis of something like
|
|
|
|
// this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
|
|
|
|
|
|
|
|
SCEVZeroExtendExpr *&Result = SCEVZeroExtends[std::make_pair(Op, Ty)];
|
|
|
|
if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// get - Get a canonical add expression, or something simpler if possible.
|
|
|
|
SCEVHandle SCEVAddExpr::get(std::vector<SCEVHandle> &Ops) {
|
|
|
|
assert(!Ops.empty() && "Cannot get empty add!");
|
2004-04-07 16:16:11 +00:00
|
|
|
if (Ops.size() == 1) return Ops[0];
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
// Sort by complexity, this groups all similar expression types together.
|
2004-06-20 06:23:15 +00:00
|
|
|
GroupByComplexity(Ops);
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
// If there are any constants, fold them together.
|
|
|
|
unsigned Idx = 0;
|
|
|
|
if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
|
|
|
|
++Idx;
|
2004-04-07 16:16:11 +00:00
|
|
|
assert(Idx < Ops.size());
|
2004-04-02 20:23:17 +00:00
|
|
|
while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
|
|
|
|
// We found two constants, fold them together!
|
|
|
|
Constant *Fold = ConstantExpr::getAdd(LHSC->getValue(), RHSC->getValue());
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
|
|
|
|
Ops[0] = SCEVConstant::get(CI);
|
|
|
|
Ops.erase(Ops.begin()+1); // Erase the folded element
|
|
|
|
if (Ops.size() == 1) return Ops[0];
|
2005-02-26 18:50:19 +00:00
|
|
|
LHSC = cast<SCEVConstant>(Ops[0]);
|
2004-04-02 20:23:17 +00:00
|
|
|
} else {
|
|
|
|
// If we couldn't fold the expression, move to the next constant. Note
|
|
|
|
// that this is impossible to happen in practice because we always
|
|
|
|
// constant fold constant ints to constant ints.
|
|
|
|
++Idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we are left with a constant zero being added, strip it off.
|
|
|
|
if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
|
|
|
|
Ops.erase(Ops.begin());
|
|
|
|
--Idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2004-04-07 16:16:11 +00:00
|
|
|
if (Ops.size() == 1) return Ops[0];
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// Okay, check to see if the same value occurs in the operand list twice. If
|
|
|
|
// so, merge them together into an multiply expression. Since we sorted the
|
|
|
|
// list, these values are required to be adjacent.
|
|
|
|
const Type *Ty = Ops[0]->getType();
|
|
|
|
for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
|
|
|
|
if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
|
|
|
|
// Found a match, merge the two values into a multiply, and add any
|
|
|
|
// remaining values to the result.
|
2004-04-23 21:29:03 +00:00
|
|
|
SCEVHandle Two = SCEVUnknown::getIntegerSCEV(2, Ty);
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle Mul = SCEVMulExpr::get(Ops[i], Two);
|
|
|
|
if (Ops.size() == 2)
|
|
|
|
return Mul;
|
|
|
|
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
|
|
|
|
Ops.push_back(Mul);
|
|
|
|
return SCEVAddExpr::get(Ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, now we know the first non-constant operand. If there are add
|
|
|
|
// operands they would be next.
|
|
|
|
if (Idx < Ops.size()) {
|
|
|
|
bool DeletedAdd = false;
|
|
|
|
while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
|
|
|
|
// If we have an add, expand the add operands onto the end of the operands
|
|
|
|
// list.
|
|
|
|
Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
|
|
|
|
Ops.erase(Ops.begin()+Idx);
|
|
|
|
DeletedAdd = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we deleted at least one add, we added operands to the end of the list,
|
|
|
|
// and they are not necessarily sorted. Recurse to resort and resimplify
|
|
|
|
// any operands we just aquired.
|
|
|
|
if (DeletedAdd)
|
|
|
|
return get(Ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Skip over the add expression until we get to a multiply.
|
|
|
|
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
|
|
|
|
++Idx;
|
|
|
|
|
|
|
|
// If we are adding something to a multiply expression, make sure the
|
|
|
|
// something is not already an operand of the multiply. If so, merge it into
|
|
|
|
// the multiply.
|
|
|
|
for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
|
|
|
|
SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
|
|
|
|
for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
|
|
|
|
SCEV *MulOpSCEV = Mul->getOperand(MulOp);
|
|
|
|
for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
|
2004-12-04 20:54:32 +00:00
|
|
|
if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
|
2004-04-02 20:23:17 +00:00
|
|
|
// Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
|
|
|
|
SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
|
|
|
|
if (Mul->getNumOperands() != 2) {
|
|
|
|
// If the multiply has more than two operands, we must get the
|
|
|
|
// Y*Z term.
|
|
|
|
std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
|
|
|
|
MulOps.erase(MulOps.begin()+MulOp);
|
|
|
|
InnerMul = SCEVMulExpr::get(MulOps);
|
|
|
|
}
|
2004-04-23 21:29:03 +00:00
|
|
|
SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, Ty);
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle AddOne = SCEVAddExpr::get(InnerMul, One);
|
|
|
|
SCEVHandle OuterMul = SCEVMulExpr::get(AddOne, Ops[AddOp]);
|
|
|
|
if (Ops.size() == 2) return OuterMul;
|
|
|
|
if (AddOp < Idx) {
|
|
|
|
Ops.erase(Ops.begin()+AddOp);
|
|
|
|
Ops.erase(Ops.begin()+Idx-1);
|
|
|
|
} else {
|
|
|
|
Ops.erase(Ops.begin()+Idx);
|
|
|
|
Ops.erase(Ops.begin()+AddOp-1);
|
|
|
|
}
|
|
|
|
Ops.push_back(OuterMul);
|
|
|
|
return SCEVAddExpr::get(Ops);
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// Check this multiply against other multiplies being added together.
|
|
|
|
for (unsigned OtherMulIdx = Idx+1;
|
|
|
|
OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
|
|
|
|
++OtherMulIdx) {
|
|
|
|
SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
|
|
|
|
// If MulOp occurs in OtherMul, we can fold the two multiplies
|
|
|
|
// together.
|
|
|
|
for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
|
|
|
|
OMulOp != e; ++OMulOp)
|
|
|
|
if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
|
|
|
|
// Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
|
|
|
|
SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
|
|
|
|
if (Mul->getNumOperands() != 2) {
|
|
|
|
std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
|
|
|
|
MulOps.erase(MulOps.begin()+MulOp);
|
|
|
|
InnerMul1 = SCEVMulExpr::get(MulOps);
|
|
|
|
}
|
|
|
|
SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
|
|
|
|
if (OtherMul->getNumOperands() != 2) {
|
|
|
|
std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
|
|
|
|
OtherMul->op_end());
|
|
|
|
MulOps.erase(MulOps.begin()+OMulOp);
|
|
|
|
InnerMul2 = SCEVMulExpr::get(MulOps);
|
|
|
|
}
|
|
|
|
SCEVHandle InnerMulSum = SCEVAddExpr::get(InnerMul1,InnerMul2);
|
|
|
|
SCEVHandle OuterMul = SCEVMulExpr::get(MulOpSCEV, InnerMulSum);
|
|
|
|
if (Ops.size() == 2) return OuterMul;
|
|
|
|
Ops.erase(Ops.begin()+Idx);
|
|
|
|
Ops.erase(Ops.begin()+OtherMulIdx-1);
|
|
|
|
Ops.push_back(OuterMul);
|
|
|
|
return SCEVAddExpr::get(Ops);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are any add recurrences in the operands list, see if any other
|
|
|
|
// added values are loop invariant. If so, we can fold them into the
|
|
|
|
// recurrence.
|
|
|
|
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
|
|
|
|
++Idx;
|
|
|
|
|
|
|
|
// Scan over all recurrences, trying to fold loop invariants into them.
|
|
|
|
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
|
|
|
|
// Scan all of the other operands to this add and add them to the vector if
|
|
|
|
// they are loop invariant w.r.t. the recurrence.
|
|
|
|
std::vector<SCEVHandle> LIOps;
|
|
|
|
SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
|
|
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
|
|
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
|
|
|
|
LIOps.push_back(Ops[i]);
|
|
|
|
Ops.erase(Ops.begin()+i);
|
|
|
|
--i; --e;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we found some loop invariants, fold them into the recurrence.
|
|
|
|
if (!LIOps.empty()) {
|
|
|
|
// NLI + LI + { Start,+,Step} --> NLI + { LI+Start,+,Step }
|
|
|
|
LIOps.push_back(AddRec->getStart());
|
|
|
|
|
|
|
|
std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
|
|
|
|
AddRecOps[0] = SCEVAddExpr::get(LIOps);
|
|
|
|
|
|
|
|
SCEVHandle NewRec = SCEVAddRecExpr::get(AddRecOps, AddRec->getLoop());
|
|
|
|
// If all of the other operands were loop invariant, we are done.
|
|
|
|
if (Ops.size() == 1) return NewRec;
|
|
|
|
|
|
|
|
// Otherwise, add the folded AddRec by the non-liv parts.
|
|
|
|
for (unsigned i = 0;; ++i)
|
|
|
|
if (Ops[i] == AddRec) {
|
|
|
|
Ops[i] = NewRec;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return SCEVAddExpr::get(Ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, if there weren't any loop invariants to be folded, check to see if
|
|
|
|
// there are multiple AddRec's with the same loop induction variable being
|
|
|
|
// added together. If so, we can fold them.
|
|
|
|
for (unsigned OtherIdx = Idx+1;
|
|
|
|
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
|
|
|
|
if (OtherIdx != Idx) {
|
|
|
|
SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
|
|
|
|
if (AddRec->getLoop() == OtherAddRec->getLoop()) {
|
|
|
|
// Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
|
|
|
|
std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
|
|
|
|
for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
|
|
|
|
if (i >= NewOps.size()) {
|
|
|
|
NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
|
|
|
|
OtherAddRec->op_end());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
NewOps[i] = SCEVAddExpr::get(NewOps[i], OtherAddRec->getOperand(i));
|
|
|
|
}
|
|
|
|
SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
|
|
|
|
|
|
|
|
if (Ops.size() == 2) return NewAddRec;
|
|
|
|
|
|
|
|
Ops.erase(Ops.begin()+Idx);
|
|
|
|
Ops.erase(Ops.begin()+OtherIdx-1);
|
|
|
|
Ops.push_back(NewAddRec);
|
|
|
|
return SCEVAddExpr::get(Ops);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise couldn't fold anything into this recurrence. Move onto the
|
|
|
|
// next one.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, it looks like we really DO need an add expr. Check to see if we
|
|
|
|
// already have one, otherwise create a new one.
|
|
|
|
std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
|
|
|
SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scAddExpr,
|
|
|
|
SCEVOps)];
|
|
|
|
if (Result == 0) Result = new SCEVAddExpr(Ops);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
SCEVHandle SCEVMulExpr::get(std::vector<SCEVHandle> &Ops) {
|
|
|
|
assert(!Ops.empty() && "Cannot get empty mul!");
|
|
|
|
|
|
|
|
// Sort by complexity, this groups all similar expression types together.
|
2004-06-20 06:23:15 +00:00
|
|
|
GroupByComplexity(Ops);
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
// If there are any constants, fold them together.
|
|
|
|
unsigned Idx = 0;
|
|
|
|
if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
|
|
|
|
|
|
|
|
// C1*(C2+V) -> C1*C2 + C1*V
|
|
|
|
if (Ops.size() == 2)
|
|
|
|
if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
|
|
|
|
if (Add->getNumOperands() == 2 &&
|
|
|
|
isa<SCEVConstant>(Add->getOperand(0)))
|
|
|
|
return SCEVAddExpr::get(SCEVMulExpr::get(LHSC, Add->getOperand(0)),
|
|
|
|
SCEVMulExpr::get(LHSC, Add->getOperand(1)));
|
|
|
|
|
|
|
|
|
|
|
|
++Idx;
|
|
|
|
while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
|
|
|
|
// We found two constants, fold them together!
|
|
|
|
Constant *Fold = ConstantExpr::getMul(LHSC->getValue(), RHSC->getValue());
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Fold)) {
|
|
|
|
Ops[0] = SCEVConstant::get(CI);
|
|
|
|
Ops.erase(Ops.begin()+1); // Erase the folded element
|
|
|
|
if (Ops.size() == 1) return Ops[0];
|
2005-02-26 18:50:19 +00:00
|
|
|
LHSC = cast<SCEVConstant>(Ops[0]);
|
2004-04-02 20:23:17 +00:00
|
|
|
} else {
|
|
|
|
// If we couldn't fold the expression, move to the next constant. Note
|
|
|
|
// that this is impossible to happen in practice because we always
|
|
|
|
// constant fold constant ints to constant ints.
|
|
|
|
++Idx;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we are left with a constant one being multiplied, strip it off.
|
|
|
|
if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
|
|
|
|
Ops.erase(Ops.begin());
|
|
|
|
--Idx;
|
|
|
|
} else if (cast<SCEVConstant>(Ops[0])->getValue()->isNullValue()) {
|
|
|
|
// If we have a multiply of zero, it will always be zero.
|
|
|
|
return Ops[0];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Skip over the add expression until we get to a multiply.
|
|
|
|
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
|
|
|
|
++Idx;
|
|
|
|
|
|
|
|
if (Ops.size() == 1)
|
|
|
|
return Ops[0];
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// If there are mul operands inline them all into this expression.
|
|
|
|
if (Idx < Ops.size()) {
|
|
|
|
bool DeletedMul = false;
|
|
|
|
while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
|
|
|
|
// If we have an mul, expand the mul operands onto the end of the operands
|
|
|
|
// list.
|
|
|
|
Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
|
|
|
|
Ops.erase(Ops.begin()+Idx);
|
|
|
|
DeletedMul = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we deleted at least one mul, we added operands to the end of the list,
|
|
|
|
// and they are not necessarily sorted. Recurse to resort and resimplify
|
|
|
|
// any operands we just aquired.
|
|
|
|
if (DeletedMul)
|
|
|
|
return get(Ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there are any add recurrences in the operands list, see if any other
|
|
|
|
// added values are loop invariant. If so, we can fold them into the
|
|
|
|
// recurrence.
|
|
|
|
while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
|
|
|
|
++Idx;
|
|
|
|
|
|
|
|
// Scan over all recurrences, trying to fold loop invariants into them.
|
|
|
|
for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
|
|
|
|
// Scan all of the other operands to this mul and add them to the vector if
|
|
|
|
// they are loop invariant w.r.t. the recurrence.
|
|
|
|
std::vector<SCEVHandle> LIOps;
|
|
|
|
SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
|
|
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
|
|
|
|
if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
|
|
|
|
LIOps.push_back(Ops[i]);
|
|
|
|
Ops.erase(Ops.begin()+i);
|
|
|
|
--i; --e;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we found some loop invariants, fold them into the recurrence.
|
|
|
|
if (!LIOps.empty()) {
|
|
|
|
// NLI * LI * { Start,+,Step} --> NLI * { LI*Start,+,LI*Step }
|
|
|
|
std::vector<SCEVHandle> NewOps;
|
|
|
|
NewOps.reserve(AddRec->getNumOperands());
|
|
|
|
if (LIOps.size() == 1) {
|
|
|
|
SCEV *Scale = LIOps[0];
|
|
|
|
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
|
|
|
|
NewOps.push_back(SCEVMulExpr::get(Scale, AddRec->getOperand(i)));
|
|
|
|
} else {
|
|
|
|
for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
|
|
|
|
std::vector<SCEVHandle> MulOps(LIOps);
|
|
|
|
MulOps.push_back(AddRec->getOperand(i));
|
|
|
|
NewOps.push_back(SCEVMulExpr::get(MulOps));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVHandle NewRec = SCEVAddRecExpr::get(NewOps, AddRec->getLoop());
|
|
|
|
|
|
|
|
// If all of the other operands were loop invariant, we are done.
|
|
|
|
if (Ops.size() == 1) return NewRec;
|
|
|
|
|
|
|
|
// Otherwise, multiply the folded AddRec by the non-liv parts.
|
|
|
|
for (unsigned i = 0;; ++i)
|
|
|
|
if (Ops[i] == AddRec) {
|
|
|
|
Ops[i] = NewRec;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return SCEVMulExpr::get(Ops);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, if there weren't any loop invariants to be folded, check to see if
|
|
|
|
// there are multiple AddRec's with the same loop induction variable being
|
|
|
|
// multiplied together. If so, we can fold them.
|
|
|
|
for (unsigned OtherIdx = Idx+1;
|
|
|
|
OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
|
|
|
|
if (OtherIdx != Idx) {
|
|
|
|
SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
|
|
|
|
if (AddRec->getLoop() == OtherAddRec->getLoop()) {
|
|
|
|
// F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
|
|
|
|
SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
|
|
|
|
SCEVHandle NewStart = SCEVMulExpr::get(F->getStart(),
|
|
|
|
G->getStart());
|
|
|
|
SCEVHandle B = F->getStepRecurrence();
|
|
|
|
SCEVHandle D = G->getStepRecurrence();
|
|
|
|
SCEVHandle NewStep = SCEVAddExpr::get(SCEVMulExpr::get(F, D),
|
|
|
|
SCEVMulExpr::get(G, B),
|
|
|
|
SCEVMulExpr::get(B, D));
|
|
|
|
SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewStart, NewStep,
|
|
|
|
F->getLoop());
|
|
|
|
if (Ops.size() == 2) return NewAddRec;
|
|
|
|
|
|
|
|
Ops.erase(Ops.begin()+Idx);
|
|
|
|
Ops.erase(Ops.begin()+OtherIdx-1);
|
|
|
|
Ops.push_back(NewAddRec);
|
|
|
|
return SCEVMulExpr::get(Ops);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Otherwise couldn't fold anything into this recurrence. Move onto the
|
|
|
|
// next one.
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, it looks like we really DO need an mul expr. Check to see if we
|
|
|
|
// already have one, otherwise create a new one.
|
|
|
|
std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
|
|
|
|
SCEVCommutativeExpr *&Result = SCEVCommExprs[std::make_pair(scMulExpr,
|
|
|
|
SCEVOps)];
|
2004-12-04 20:54:32 +00:00
|
|
|
if (Result == 0)
|
|
|
|
Result = new SCEVMulExpr(Ops);
|
2004-04-02 20:23:17 +00:00
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVHandle SCEVUDivExpr::get(const SCEVHandle &LHS, const SCEVHandle &RHS) {
|
|
|
|
if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
|
|
|
|
if (RHSC->getValue()->equalsInt(1))
|
|
|
|
return LHS; // X /u 1 --> x
|
|
|
|
if (RHSC->getValue()->isAllOnesValue())
|
2005-03-09 05:34:41 +00:00
|
|
|
return SCEV::getNegativeSCEV(LHS); // X /u -1 --> -x
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
|
|
|
|
Constant *LHSCV = LHSC->getValue();
|
|
|
|
Constant *RHSCV = RHSC->getValue();
|
|
|
|
if (LHSCV->getType()->isSigned())
|
|
|
|
LHSCV = ConstantExpr::getCast(LHSCV,
|
|
|
|
LHSCV->getType()->getUnsignedVersion());
|
|
|
|
if (RHSCV->getType()->isSigned())
|
|
|
|
RHSCV = ConstantExpr::getCast(RHSCV, LHSCV->getType());
|
|
|
|
return SCEVUnknown::get(ConstantExpr::getDiv(LHSCV, RHSCV));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
|
|
|
|
|
|
|
|
SCEVUDivExpr *&Result = SCEVUDivs[std::make_pair(LHS, RHS)];
|
|
|
|
if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// SCEVAddRecExpr::get - Get a add recurrence expression for the
|
|
|
|
/// specified loop. Simplify the expression as much as possible.
|
|
|
|
SCEVHandle SCEVAddRecExpr::get(const SCEVHandle &Start,
|
|
|
|
const SCEVHandle &Step, const Loop *L) {
|
|
|
|
std::vector<SCEVHandle> Operands;
|
|
|
|
Operands.push_back(Start);
|
|
|
|
if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
|
|
|
|
if (StepChrec->getLoop() == L) {
|
|
|
|
Operands.insert(Operands.end(), StepChrec->op_begin(),
|
|
|
|
StepChrec->op_end());
|
|
|
|
return get(Operands, L);
|
|
|
|
}
|
|
|
|
|
|
|
|
Operands.push_back(Step);
|
|
|
|
return get(Operands, L);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// SCEVAddRecExpr::get - Get a add recurrence expression for the
|
|
|
|
/// specified loop. Simplify the expression as much as possible.
|
|
|
|
SCEVHandle SCEVAddRecExpr::get(std::vector<SCEVHandle> &Operands,
|
|
|
|
const Loop *L) {
|
|
|
|
if (Operands.size() == 1) return Operands[0];
|
|
|
|
|
|
|
|
if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Operands.back()))
|
|
|
|
if (StepC->getValue()->isNullValue()) {
|
|
|
|
Operands.pop_back();
|
|
|
|
return get(Operands, L); // { X,+,0 } --> X
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVAddRecExpr *&Result =
|
|
|
|
SCEVAddRecExprs[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
|
|
|
|
Operands.end()))];
|
|
|
|
if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2004-04-15 15:07:24 +00:00
|
|
|
SCEVHandle SCEVUnknown::get(Value *V) {
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
|
|
|
|
return SCEVConstant::get(CI);
|
|
|
|
SCEVUnknown *&Result = SCEVUnknowns[V];
|
|
|
|
if (Result == 0) Result = new SCEVUnknown(V);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ScalarEvolutionsImpl Definition and Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
/// ScalarEvolutionsImpl - This class implements the main driver for the scalar
|
|
|
|
/// evolution code.
|
|
|
|
///
|
|
|
|
namespace {
|
|
|
|
struct ScalarEvolutionsImpl {
|
|
|
|
/// F - The function we are analyzing.
|
|
|
|
///
|
|
|
|
Function &F;
|
|
|
|
|
|
|
|
/// LI - The loop information for the function we are currently analyzing.
|
|
|
|
///
|
|
|
|
LoopInfo &LI;
|
|
|
|
|
|
|
|
/// UnknownValue - This SCEV is used to represent unknown trip counts and
|
|
|
|
/// things.
|
|
|
|
SCEVHandle UnknownValue;
|
|
|
|
|
|
|
|
/// Scalars - This is a cache of the scalars we have analyzed so far.
|
|
|
|
///
|
|
|
|
std::map<Value*, SCEVHandle> Scalars;
|
|
|
|
|
|
|
|
/// IterationCounts - Cache the iteration count of the loops for this
|
|
|
|
/// function as they are computed.
|
|
|
|
std::map<const Loop*, SCEVHandle> IterationCounts;
|
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
/// ConstantEvolutionLoopExitValue - This map contains entries for all of
|
|
|
|
/// the PHI instructions that we attempt to compute constant evolutions for.
|
|
|
|
/// This allows us to avoid potentially expensive recomputation of these
|
|
|
|
/// properties. An instruction maps to null if we are unable to compute its
|
|
|
|
/// exit value.
|
|
|
|
std::map<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
public:
|
|
|
|
ScalarEvolutionsImpl(Function &f, LoopInfo &li)
|
|
|
|
: F(f), LI(li), UnknownValue(new SCEVCouldNotCompute()) {}
|
|
|
|
|
|
|
|
/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
|
|
|
|
/// expression and create a new one.
|
|
|
|
SCEVHandle getSCEV(Value *V);
|
|
|
|
|
2005-08-09 23:36:33 +00:00
|
|
|
/// hasSCEV - Return true if the SCEV for this value has already been
|
|
|
|
/// computed.
|
|
|
|
bool hasSCEV(Value *V) const {
|
|
|
|
return Scalars.count(V);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
|
|
|
|
/// the specified value.
|
|
|
|
void setSCEV(Value *V, const SCEVHandle &H) {
|
|
|
|
bool isNew = Scalars.insert(std::make_pair(V, H)).second;
|
|
|
|
assert(isNew && "This entry already existed!");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
/// getSCEVAtScope - Compute the value of the specified expression within
|
|
|
|
/// the indicated loop (which may be null to indicate in no loop). If the
|
|
|
|
/// expression cannot be evaluated, return UnknownValue itself.
|
|
|
|
SCEVHandle getSCEVAtScope(SCEV *V, const Loop *L);
|
|
|
|
|
|
|
|
|
|
|
|
/// hasLoopInvariantIterationCount - Return true if the specified loop has
|
|
|
|
/// an analyzable loop-invariant iteration count.
|
|
|
|
bool hasLoopInvariantIterationCount(const Loop *L);
|
|
|
|
|
|
|
|
/// getIterationCount - If the specified loop has a predictable iteration
|
|
|
|
/// count, return it. Note that it is not valid to call this method on a
|
|
|
|
/// loop without a loop-invariant iteration count.
|
|
|
|
SCEVHandle getIterationCount(const Loop *L);
|
|
|
|
|
|
|
|
/// deleteInstructionFromRecords - This method should be called by the
|
|
|
|
/// client before it removes an instruction from the program, to make sure
|
|
|
|
/// that no dangling references are left around.
|
|
|
|
void deleteInstructionFromRecords(Instruction *I);
|
|
|
|
|
|
|
|
private:
|
|
|
|
/// createSCEV - We know that there is no SCEV for the specified value.
|
|
|
|
/// Analyze the expression.
|
|
|
|
SCEVHandle createSCEV(Value *V);
|
|
|
|
SCEVHandle createNodeForCast(CastInst *CI);
|
|
|
|
|
|
|
|
/// createNodeForPHI - Provide the special handling we need to analyze PHI
|
|
|
|
/// SCEVs.
|
|
|
|
SCEVHandle createNodeForPHI(PHINode *PN);
|
2005-02-13 04:37:18 +00:00
|
|
|
|
|
|
|
/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value
|
|
|
|
/// for the specified instruction and replaces any references to the
|
|
|
|
/// symbolic value SymName with the specified value. This is used during
|
|
|
|
/// PHI resolution.
|
|
|
|
void ReplaceSymbolicValueWithConcrete(Instruction *I,
|
|
|
|
const SCEVHandle &SymName,
|
|
|
|
const SCEVHandle &NewVal);
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
/// ComputeIterationCount - Compute the number of times the specified loop
|
|
|
|
/// will iterate.
|
|
|
|
SCEVHandle ComputeIterationCount(const Loop *L);
|
|
|
|
|
This nutty patch has been in my tree since before 1.3 went out, and it needs
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16926 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-12 01:49:27 +00:00
|
|
|
/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
|
|
|
|
/// 'setcc load X, cst', try to se if we can compute the trip count.
|
|
|
|
SCEVHandle ComputeLoadConstantCompareIterationCount(LoadInst *LI,
|
|
|
|
Constant *RHS,
|
|
|
|
const Loop *L,
|
|
|
|
unsigned SetCCOpcode);
|
|
|
|
|
2004-04-17 18:36:24 +00:00
|
|
|
/// ComputeIterationCountExhaustively - If the trip is known to execute a
|
|
|
|
/// constant number of times (the condition evolves only from constants),
|
|
|
|
/// try to evaluate a few iterations of the loop until we get the exit
|
|
|
|
/// condition gets a value of ExitWhen (true or false). If we cannot
|
|
|
|
/// evaluate the trip count of the loop, return UnknownValue.
|
|
|
|
SCEVHandle ComputeIterationCountExhaustively(const Loop *L, Value *Cond,
|
|
|
|
bool ExitWhen);
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
/// HowFarToZero - Return the number of times a backedge comparing the
|
|
|
|
/// specified value to zero will execute. If not computable, return
|
2005-08-15 23:33:51 +00:00
|
|
|
/// UnknownValue.
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle HowFarToZero(SCEV *V, const Loop *L);
|
|
|
|
|
|
|
|
/// HowFarToNonZero - Return the number of times a backedge checking the
|
|
|
|
/// specified value for nonzero will execute. If not computable, return
|
2005-08-15 23:33:51 +00:00
|
|
|
/// UnknownValue.
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle HowFarToNonZero(SCEV *V, const Loop *L);
|
2004-04-17 22:58:41 +00:00
|
|
|
|
2005-08-15 23:33:51 +00:00
|
|
|
/// HowManyLessThans - Return the number of times a backedge containing the
|
|
|
|
/// specified less-than comparison will execute. If not computable, return
|
|
|
|
/// UnknownValue.
|
|
|
|
SCEVHandle HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L);
|
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
|
|
|
|
/// in the header of its containing loop, we know the loop executes a
|
|
|
|
/// constant number of times, and the PHI node is just a recurrence
|
|
|
|
/// involving constants, fold it.
|
|
|
|
Constant *getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its,
|
|
|
|
const Loop *L);
|
2004-04-02 20:23:17 +00:00
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Basic SCEV Analysis and PHI Idiom Recognition Code
|
|
|
|
//
|
|
|
|
|
|
|
|
/// deleteInstructionFromRecords - This method should be called by the
|
|
|
|
/// client before it removes an instruction from the program, to make sure
|
|
|
|
/// that no dangling references are left around.
|
|
|
|
void ScalarEvolutionsImpl::deleteInstructionFromRecords(Instruction *I) {
|
|
|
|
Scalars.erase(I);
|
2004-04-17 22:58:41 +00:00
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(I))
|
|
|
|
ConstantEvolutionLoopExitValue.erase(PN);
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
|
|
|
|
/// expression and create a new one.
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::getSCEV(Value *V) {
|
|
|
|
assert(V->getType() != Type::VoidTy && "Can't analyze void expressions!");
|
|
|
|
|
|
|
|
std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
|
|
|
|
if (I != Scalars.end()) return I->second;
|
|
|
|
SCEVHandle S = createSCEV(V);
|
|
|
|
Scalars.insert(std::make_pair(V, S));
|
|
|
|
return S;
|
|
|
|
}
|
|
|
|
|
2005-02-13 04:37:18 +00:00
|
|
|
/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
|
|
|
|
/// the specified instruction and replaces any references to the symbolic value
|
|
|
|
/// SymName with the specified value. This is used during PHI resolution.
|
|
|
|
void ScalarEvolutionsImpl::
|
|
|
|
ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
|
|
|
|
const SCEVHandle &NewVal) {
|
2004-04-02 20:23:17 +00:00
|
|
|
std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
|
2005-02-13 04:37:18 +00:00
|
|
|
if (SI == Scalars.end()) return;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
2005-02-13 04:37:18 +00:00
|
|
|
SCEVHandle NV =
|
|
|
|
SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal);
|
|
|
|
if (NV == SI->second) return; // No change.
|
|
|
|
|
|
|
|
SI->second = NV; // Update the scalars map!
|
|
|
|
|
|
|
|
// Any instruction values that use this instruction might also need to be
|
|
|
|
// updated!
|
|
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
|
|
|
UI != E; ++UI)
|
|
|
|
ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
|
|
|
|
/// a loop header, making it a potential recurrence, or it doesn't.
|
|
|
|
///
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::createNodeForPHI(PHINode *PN) {
|
|
|
|
if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
|
|
|
|
if (const Loop *L = LI.getLoopFor(PN->getParent()))
|
|
|
|
if (L->getHeader() == PN->getParent()) {
|
|
|
|
// If it lives in the loop header, it has two incoming values, one
|
|
|
|
// from outside the loop, and one from inside.
|
|
|
|
unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
|
|
|
|
unsigned BackEdge = IncomingEdge^1;
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// While we are analyzing this PHI node, handle its value symbolically.
|
|
|
|
SCEVHandle SymbolicName = SCEVUnknown::get(PN);
|
|
|
|
assert(Scalars.find(PN) == Scalars.end() &&
|
|
|
|
"PHI node already processed?");
|
|
|
|
Scalars.insert(std::make_pair(PN, SymbolicName));
|
|
|
|
|
|
|
|
// Using this symbolic name for the PHI, analyze the value coming around
|
|
|
|
// the back-edge.
|
|
|
|
SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
|
|
|
|
|
|
|
|
// NOTE: If BEValue is loop invariant, we know that the PHI node just
|
|
|
|
// has a special value for the first iteration of the loop.
|
|
|
|
|
|
|
|
// If the value coming around the backedge is an add with the symbolic
|
|
|
|
// value we just inserted, then we found a simple induction variable!
|
|
|
|
if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
|
|
|
|
// If there is a single occurrence of the symbolic value, replace it
|
|
|
|
// with a recurrence.
|
|
|
|
unsigned FoundIndex = Add->getNumOperands();
|
|
|
|
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
|
|
|
|
if (Add->getOperand(i) == SymbolicName)
|
|
|
|
if (FoundIndex == e) {
|
|
|
|
FoundIndex = i;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FoundIndex != Add->getNumOperands()) {
|
|
|
|
// Create an add with everything but the specified operand.
|
|
|
|
std::vector<SCEVHandle> Ops;
|
|
|
|
for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
|
|
|
|
if (i != FoundIndex)
|
|
|
|
Ops.push_back(Add->getOperand(i));
|
|
|
|
SCEVHandle Accum = SCEVAddExpr::get(Ops);
|
|
|
|
|
|
|
|
// This is not a valid addrec if the step amount is varying each
|
|
|
|
// loop iteration, but is not itself an addrec in this loop.
|
|
|
|
if (Accum->isLoopInvariant(L) ||
|
|
|
|
(isa<SCEVAddRecExpr>(Accum) &&
|
|
|
|
cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
|
|
|
|
SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
|
|
|
|
SCEVHandle PHISCEV = SCEVAddRecExpr::get(StartVal, Accum, L);
|
|
|
|
|
|
|
|
// Okay, for the entire analysis of this edge we assumed the PHI
|
|
|
|
// to be symbolic. We now need to go back and update all of the
|
|
|
|
// entries for the scalars that use the PHI (except for the PHI
|
|
|
|
// itself) to use the new analyzed value instead of the "symbolic"
|
|
|
|
// value.
|
2005-02-13 04:37:18 +00:00
|
|
|
ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
|
2004-04-02 20:23:17 +00:00
|
|
|
return PHISCEV;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return SymbolicName;
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// If it's not a loop phi, we can't handle it yet.
|
|
|
|
return SCEVUnknown::get(PN);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// createNodeForCast - Handle the various forms of casts that we support.
|
|
|
|
///
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::createNodeForCast(CastInst *CI) {
|
|
|
|
const Type *SrcTy = CI->getOperand(0)->getType();
|
|
|
|
const Type *DestTy = CI->getType();
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// If this is a noop cast (ie, conversion from int to uint), ignore it.
|
|
|
|
if (SrcTy->isLosslesslyConvertibleTo(DestTy))
|
|
|
|
return getSCEV(CI->getOperand(0));
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
if (SrcTy->isInteger() && DestTy->isInteger()) {
|
|
|
|
// Otherwise, if this is a truncating integer cast, we can represent this
|
|
|
|
// cast.
|
|
|
|
if (SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
|
|
|
|
return SCEVTruncateExpr::get(getSCEV(CI->getOperand(0)),
|
|
|
|
CI->getType()->getUnsignedVersion());
|
|
|
|
if (SrcTy->isUnsigned() &&
|
|
|
|
SrcTy->getPrimitiveSize() > DestTy->getPrimitiveSize())
|
|
|
|
return SCEVZeroExtendExpr::get(getSCEV(CI->getOperand(0)),
|
|
|
|
CI->getType()->getUnsignedVersion());
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is an sign or zero extending cast and we can prove that the value
|
|
|
|
// will never overflow, we could do similar transformations.
|
|
|
|
|
|
|
|
// Otherwise, we can't handle this cast!
|
|
|
|
return SCEVUnknown::get(CI);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// createSCEV - We know that there is no SCEV for the specified value.
|
|
|
|
/// Analyze the expression.
|
|
|
|
///
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::createSCEV(Value *V) {
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
|
|
switch (I->getOpcode()) {
|
|
|
|
case Instruction::Add:
|
|
|
|
return SCEVAddExpr::get(getSCEV(I->getOperand(0)),
|
|
|
|
getSCEV(I->getOperand(1)));
|
|
|
|
case Instruction::Mul:
|
|
|
|
return SCEVMulExpr::get(getSCEV(I->getOperand(0)),
|
|
|
|
getSCEV(I->getOperand(1)));
|
|
|
|
case Instruction::Div:
|
|
|
|
if (V->getType()->isInteger() && V->getType()->isUnsigned())
|
|
|
|
return SCEVUDivExpr::get(getSCEV(I->getOperand(0)),
|
|
|
|
getSCEV(I->getOperand(1)));
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Instruction::Sub:
|
2005-03-09 05:34:41 +00:00
|
|
|
return SCEV::getMinusSCEV(getSCEV(I->getOperand(0)),
|
|
|
|
getSCEV(I->getOperand(1)));
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
case Instruction::Shl:
|
|
|
|
// Turn shift left of a constant amount into a multiply.
|
|
|
|
if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
|
|
Constant *X = ConstantInt::get(V->getType(), 1);
|
|
|
|
X = ConstantExpr::getShl(X, SA);
|
|
|
|
return SCEVMulExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Instruction::Shr:
|
|
|
|
if (ConstantUInt *SA = dyn_cast<ConstantUInt>(I->getOperand(1)))
|
|
|
|
if (V->getType()->isUnsigned()) {
|
|
|
|
Constant *X = ConstantInt::get(V->getType(), 1);
|
|
|
|
X = ConstantExpr::getShl(X, SA);
|
|
|
|
return SCEVUDivExpr::get(getSCEV(I->getOperand(0)), getSCEV(X));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
|
|
|
|
case Instruction::Cast:
|
|
|
|
return createNodeForCast(cast<CastInst>(I));
|
|
|
|
|
|
|
|
case Instruction::PHI:
|
|
|
|
return createNodeForPHI(cast<PHINode>(I));
|
|
|
|
|
|
|
|
default: // We cannot analyze this expression.
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return SCEVUnknown::get(V);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Iteration Count Computation Code
|
|
|
|
//
|
|
|
|
|
|
|
|
/// getIterationCount - If the specified loop has a predictable iteration
|
|
|
|
/// count, return it. Note that it is not valid to call this method on a
|
|
|
|
/// loop without a loop-invariant iteration count.
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::getIterationCount(const Loop *L) {
|
|
|
|
std::map<const Loop*, SCEVHandle>::iterator I = IterationCounts.find(L);
|
|
|
|
if (I == IterationCounts.end()) {
|
|
|
|
SCEVHandle ItCount = ComputeIterationCount(L);
|
|
|
|
I = IterationCounts.insert(std::make_pair(L, ItCount)).first;
|
|
|
|
if (ItCount != UnknownValue) {
|
|
|
|
assert(ItCount->isLoopInvariant(L) &&
|
|
|
|
"Computed trip count isn't loop invariant for loop!");
|
|
|
|
++NumTripCountsComputed;
|
|
|
|
} else if (isa<PHINode>(L->getHeader()->begin())) {
|
|
|
|
// Only count loops that have phi nodes as not being computable.
|
|
|
|
++NumTripCountsNotComputed;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return I->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ComputeIterationCount - Compute the number of times the specified loop
|
|
|
|
/// will iterate.
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::ComputeIterationCount(const Loop *L) {
|
|
|
|
// If the loop has a non-one exit block count, we can't analyze it.
|
2004-04-18 22:14:10 +00:00
|
|
|
std::vector<BasicBlock*> ExitBlocks;
|
|
|
|
L->getExitBlocks(ExitBlocks);
|
|
|
|
if (ExitBlocks.size() != 1) return UnknownValue;
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
// Okay, there is one exit block. Try to find the condition that causes the
|
|
|
|
// loop to be exited.
|
2004-04-18 22:14:10 +00:00
|
|
|
BasicBlock *ExitBlock = ExitBlocks[0];
|
2004-04-02 20:23:17 +00:00
|
|
|
|
|
|
|
BasicBlock *ExitingBlock = 0;
|
|
|
|
for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
|
|
|
|
PI != E; ++PI)
|
|
|
|
if (L->contains(*PI)) {
|
|
|
|
if (ExitingBlock == 0)
|
|
|
|
ExitingBlock = *PI;
|
|
|
|
else
|
|
|
|
return UnknownValue; // More than one block exiting!
|
|
|
|
}
|
|
|
|
assert(ExitingBlock && "No exits from loop, something is broken!");
|
|
|
|
|
|
|
|
// Okay, we've computed the exiting block. See what condition causes us to
|
|
|
|
// exit.
|
|
|
|
//
|
|
|
|
// FIXME: we should be able to handle switch instructions (with a single exit)
|
|
|
|
// FIXME: We should handle cast of int to bool as well
|
|
|
|
BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
|
|
|
|
if (ExitBr == 0) return UnknownValue;
|
|
|
|
assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
|
|
|
|
SetCondInst *ExitCond = dyn_cast<SetCondInst>(ExitBr->getCondition());
|
2004-04-17 18:36:24 +00:00
|
|
|
if (ExitCond == 0) // Not a setcc
|
|
|
|
return ComputeIterationCountExhaustively(L, ExitBr->getCondition(),
|
|
|
|
ExitBr->getSuccessor(0) == ExitBlock);
|
2004-04-02 20:23:17 +00:00
|
|
|
|
This nutty patch has been in my tree since before 1.3 went out, and it needs
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16926 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-12 01:49:27 +00:00
|
|
|
// If the condition was exit on true, convert the condition to exit on false.
|
|
|
|
Instruction::BinaryOps Cond;
|
|
|
|
if (ExitBr->getSuccessor(1) == ExitBlock)
|
|
|
|
Cond = ExitCond->getOpcode();
|
|
|
|
else
|
|
|
|
Cond = ExitCond->getInverseCondition();
|
|
|
|
|
|
|
|
// Handle common loops like: for (X = "string"; *X; ++X)
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
|
|
|
|
if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
|
|
|
|
SCEVHandle ItCnt =
|
|
|
|
ComputeLoadConstantCompareIterationCount(LI, RHS, L, Cond);
|
|
|
|
if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
|
|
|
|
}
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
|
|
|
|
SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
|
|
|
|
|
|
|
|
// Try to evaluate any dependencies out of the loop.
|
|
|
|
SCEVHandle Tmp = getSCEVAtScope(LHS, L);
|
|
|
|
if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
|
|
|
|
Tmp = getSCEVAtScope(RHS, L);
|
|
|
|
if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
|
|
|
|
|
|
|
|
// At this point, we would like to compute how many iterations of the loop the
|
|
|
|
// predicate will return true for these inputs.
|
|
|
|
if (isa<SCEVConstant>(LHS) && !isa<SCEVConstant>(RHS)) {
|
|
|
|
// If there is a constant, force it into the RHS.
|
|
|
|
std::swap(LHS, RHS);
|
|
|
|
Cond = SetCondInst::getSwappedCondition(Cond);
|
|
|
|
}
|
|
|
|
|
|
|
|
// FIXME: think about handling pointer comparisons! i.e.:
|
|
|
|
// while (P != P+100) ++P;
|
|
|
|
|
|
|
|
// If we have a comparison of a chrec against a constant, try to use value
|
|
|
|
// ranges to answer this query.
|
|
|
|
if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
|
|
|
|
if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
|
|
|
|
if (AddRec->getLoop() == L) {
|
|
|
|
// Form the comparison range using the constant of the correct type so
|
|
|
|
// that the ConstantRange class knows to do a signed or unsigned
|
|
|
|
// comparison.
|
|
|
|
ConstantInt *CompVal = RHSC->getValue();
|
|
|
|
const Type *RealTy = ExitCond->getOperand(0)->getType();
|
|
|
|
CompVal = dyn_cast<ConstantInt>(ConstantExpr::getCast(CompVal, RealTy));
|
|
|
|
if (CompVal) {
|
|
|
|
// Form the constant range.
|
|
|
|
ConstantRange CompRange(Cond, CompVal);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// Now that we have it, if it's signed, convert it to an unsigned
|
|
|
|
// range.
|
|
|
|
if (CompRange.getLower()->getType()->isSigned()) {
|
|
|
|
const Type *NewTy = RHSC->getValue()->getType();
|
|
|
|
Constant *NewL = ConstantExpr::getCast(CompRange.getLower(), NewTy);
|
|
|
|
Constant *NewU = ConstantExpr::getCast(CompRange.getUpper(), NewTy);
|
|
|
|
CompRange = ConstantRange(NewL, NewU);
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange);
|
|
|
|
if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
|
|
|
|
}
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
switch (Cond) {
|
|
|
|
case Instruction::SetNE: // while (X != Y)
|
|
|
|
// Convert to: while (X-Y != 0)
|
2004-04-17 18:36:24 +00:00
|
|
|
if (LHS->getType()->isInteger()) {
|
2005-03-09 05:34:41 +00:00
|
|
|
SCEVHandle TC = HowFarToZero(SCEV::getMinusSCEV(LHS, RHS), L);
|
2004-04-17 18:36:24 +00:00
|
|
|
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
break;
|
|
|
|
case Instruction::SetEQ:
|
|
|
|
// Convert to: while (X-Y == 0) // while (X == Y)
|
2004-04-17 18:36:24 +00:00
|
|
|
if (LHS->getType()->isInteger()) {
|
2005-03-09 05:34:41 +00:00
|
|
|
SCEVHandle TC = HowFarToNonZero(SCEV::getMinusSCEV(LHS, RHS), L);
|
2004-04-17 18:36:24 +00:00
|
|
|
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
|
|
|
}
|
2004-04-02 20:23:17 +00:00
|
|
|
break;
|
2005-08-15 23:33:51 +00:00
|
|
|
case Instruction::SetLT:
|
|
|
|
if (LHS->getType()->isInteger() &&
|
|
|
|
ExitCond->getOperand(0)->getType()->isSigned()) {
|
|
|
|
SCEVHandle TC = HowManyLessThans(LHS, RHS, L);
|
|
|
|
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Instruction::SetGT:
|
|
|
|
if (LHS->getType()->isInteger() &&
|
|
|
|
ExitCond->getOperand(0)->getType()->isSigned()) {
|
|
|
|
SCEVHandle TC = HowManyLessThans(RHS, LHS, L);
|
|
|
|
if (!isa<SCEVCouldNotCompute>(TC)) return TC;
|
|
|
|
}
|
|
|
|
break;
|
2004-04-02 20:23:17 +00:00
|
|
|
default:
|
2004-04-02 20:26:46 +00:00
|
|
|
#if 0
|
2004-04-02 20:23:17 +00:00
|
|
|
std::cerr << "ComputeIterationCount ";
|
|
|
|
if (ExitCond->getOperand(0)->getType()->isUnsigned())
|
|
|
|
std::cerr << "[unsigned] ";
|
|
|
|
std::cerr << *LHS << " "
|
|
|
|
<< Instruction::getOpcodeName(Cond) << " " << *RHS << "\n";
|
2004-04-02 20:26:46 +00:00
|
|
|
#endif
|
2004-04-03 00:43:03 +00:00
|
|
|
break;
|
2004-04-02 20:23:17 +00:00
|
|
|
}
|
2004-04-17 18:36:24 +00:00
|
|
|
|
|
|
|
return ComputeIterationCountExhaustively(L, ExitCond,
|
|
|
|
ExitBr->getSuccessor(0) == ExitBlock);
|
|
|
|
}
|
|
|
|
|
This nutty patch has been in my tree since before 1.3 went out, and it needs
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16926 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-12 01:49:27 +00:00
|
|
|
static ConstantInt *
|
|
|
|
EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, Constant *C) {
|
|
|
|
SCEVHandle InVal = SCEVConstant::get(cast<ConstantInt>(C));
|
|
|
|
SCEVHandle Val = AddRec->evaluateAtIteration(InVal);
|
|
|
|
assert(isa<SCEVConstant>(Val) &&
|
|
|
|
"Evaluation of SCEV at constant didn't fold correctly?");
|
|
|
|
return cast<SCEVConstant>(Val)->getValue();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// GetAddressedElementFromGlobal - Given a global variable with an initializer
|
|
|
|
/// and a GEP expression (missing the pointer index) indexing into it, return
|
|
|
|
/// the addressed element of the initializer or null if the index expression is
|
|
|
|
/// invalid.
|
|
|
|
static Constant *
|
2005-04-21 21:13:18 +00:00
|
|
|
GetAddressedElementFromGlobal(GlobalVariable *GV,
|
This nutty patch has been in my tree since before 1.3 went out, and it needs
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16926 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-12 01:49:27 +00:00
|
|
|
const std::vector<ConstantInt*> &Indices) {
|
|
|
|
Constant *Init = GV->getInitializer();
|
|
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
|
|
|
|
uint64_t Idx = Indices[i]->getRawValue();
|
|
|
|
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
|
|
|
|
assert(Idx < CS->getNumOperands() && "Bad struct index!");
|
|
|
|
Init = cast<Constant>(CS->getOperand(Idx));
|
|
|
|
} else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
|
|
|
|
if (Idx >= CA->getNumOperands()) return 0; // Bogus program
|
|
|
|
Init = cast<Constant>(CA->getOperand(Idx));
|
|
|
|
} else if (isa<ConstantAggregateZero>(Init)) {
|
|
|
|
if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
|
|
|
|
assert(Idx < STy->getNumElements() && "Bad struct index!");
|
|
|
|
Init = Constant::getNullValue(STy->getElementType(Idx));
|
|
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
|
|
|
|
if (Idx >= ATy->getNumElements()) return 0; // Bogus program
|
|
|
|
Init = Constant::getNullValue(ATy->getElementType());
|
|
|
|
} else {
|
|
|
|
assert(0 && "Unknown constant aggregate type!");
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
} else {
|
|
|
|
return 0; // Unknown initializer type
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Init;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ComputeLoadConstantCompareIterationCount - Given an exit condition of
|
|
|
|
/// 'setcc load X, cst', try to se if we can compute the trip count.
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::
|
2005-04-21 21:13:18 +00:00
|
|
|
ComputeLoadConstantCompareIterationCount(LoadInst *LI, Constant *RHS,
|
This nutty patch has been in my tree since before 1.3 went out, and it needs
to go in. This patch allows us to compute the trip count of loops controlled
by values loaded from constant arrays. The cannonnical example of this is
strlen when passed a constant argument:
for (int i = 0; "constantstring"[i]; ++i) ;
return i;
In this case, it will compute that the loop executes 14 times, which means
that the exit value of i is 14. Because of this, the loop gets DCE'd and
we are happy. This also applies to anything that does similar things, e.g.
loops like this:
const float Array[] = { 0.1, 2.1, 3.2, 23.21 };
for (int i = 0; Array[i] < 20; ++i)
and is actually fairly general.
The problem with this is that it almost never triggers. The reason is that
we run indvars and the loop optimizer only at compile time, which is before
things like strlen and strcpy have been inlined into the program from libc.
Because of this, it almost never is used (it triggers twice in specint2k).
I'm committing it because it DOES work, may be useful in the future, and
doesn't slow us down at all. If/when we start running the loop optimizer
at link-time (-O4?) this will be very nice indeed :)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16926 91177308-0d34-0410-b5e6-96231b3b80d8
2004-10-12 01:49:27 +00:00
|
|
|
const Loop *L, unsigned SetCCOpcode) {
|
|
|
|
if (LI->isVolatile()) return UnknownValue;
|
|
|
|
|
|
|
|
// Check to see if the loaded pointer is a getelementptr of a global.
|
|
|
|
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
|
|
|
|
if (!GEP) return UnknownValue;
|
|
|
|
|
|
|
|
// Make sure that it is really a constant global we are gepping, with an
|
|
|
|
// initializer, and make sure the first IDX is really 0.
|
|
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
|
|
|
|
if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
|
|
|
|
GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
|
|
|
|
!cast<Constant>(GEP->getOperand(1))->isNullValue())
|
|
|
|
return UnknownValue;
|
|
|
|
|
|
|
|
// Okay, we allow one non-constant index into the GEP instruction.
|
|
|
|
Value *VarIdx = 0;
|
|
|
|
std::vector<ConstantInt*> Indexes;
|
|
|
|
unsigned VarIdxNum = 0;
|
|
|
|
for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
|
|
|
|
Indexes.push_back(CI);
|
|
|
|
} else if (!isa<ConstantInt>(GEP->getOperand(i))) {
|
|
|
|
if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
|
|
|
|
VarIdx = GEP->getOperand(i);
|
|
|
|
VarIdxNum = i-2;
|
|
|
|
Indexes.push_back(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
|
|
|
|
// Check to see if X is a loop variant variable value now.
|
|
|
|
SCEVHandle Idx = getSCEV(VarIdx);
|
|
|
|
SCEVHandle Tmp = getSCEVAtScope(Idx, L);
|
|
|
|
if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
|
|
|
|
|
|
|
|
// We can only recognize very limited forms of loop index expressions, in
|
|
|
|
// particular, only affine AddRec's like {C1,+,C2}.
|
|
|
|
SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
|
|
|
|
if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
|
|
|
|
!isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
|
|
|
|
!isa<SCEVConstant>(IdxExpr->getOperand(1)))
|
|
|
|
return UnknownValue;
|
|
|
|
|
|
|
|
unsigned MaxSteps = MaxBruteForceIterations;
|
|
|
|
for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
|
|
|
|
ConstantUInt *ItCst =
|
|
|
|
ConstantUInt::get(IdxExpr->getType()->getUnsignedVersion(), IterationNum);
|
|
|
|
ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst);
|
|
|
|
|
|
|
|
// Form the GEP offset.
|
|
|
|
Indexes[VarIdxNum] = Val;
|
|
|
|
|
|
|
|
Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
|
|
|
|
if (Result == 0) break; // Cannot compute!
|
|
|
|
|
|
|
|
// Evaluate the condition for this iteration.
|
|
|
|
Result = ConstantExpr::get(SetCCOpcode, Result, RHS);
|
|
|
|
if (!isa<ConstantBool>(Result)) break; // Couldn't decide for sure
|
|
|
|
if (Result == ConstantBool::False) {
|
|
|
|
#if 0
|
|
|
|
std::cerr << "\n***\n*** Computed loop count " << *ItCst
|
|
|
|
<< "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
|
|
|
|
<< "***\n";
|
|
|
|
#endif
|
|
|
|
++NumArrayLenItCounts;
|
|
|
|
return SCEVConstant::get(ItCst); // Found terminating iteration!
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
/// CanConstantFold - Return true if we can constant fold an instruction of the
|
|
|
|
/// specified type, assuming that all operands were constants.
|
|
|
|
static bool CanConstantFold(const Instruction *I) {
|
|
|
|
if (isa<BinaryOperator>(I) || isa<ShiftInst>(I) ||
|
|
|
|
isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
|
|
|
|
return true;
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
if (const CallInst *CI = dyn_cast<CallInst>(I))
|
|
|
|
if (const Function *F = CI->getCalledFunction())
|
|
|
|
return canConstantFoldCallTo((Function*)F); // FIXME: elim cast
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ConstantFold - Constant fold an instruction of the specified type with the
|
|
|
|
/// specified constant operands. This function may modify the operands vector.
|
|
|
|
static Constant *ConstantFold(const Instruction *I,
|
|
|
|
std::vector<Constant*> &Operands) {
|
|
|
|
if (isa<BinaryOperator>(I) || isa<ShiftInst>(I))
|
|
|
|
return ConstantExpr::get(I->getOpcode(), Operands[0], Operands[1]);
|
|
|
|
|
|
|
|
switch (I->getOpcode()) {
|
|
|
|
case Instruction::Cast:
|
|
|
|
return ConstantExpr::getCast(Operands[0], I->getType());
|
|
|
|
case Instruction::Select:
|
|
|
|
return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
|
|
|
|
case Instruction::Call:
|
2004-07-18 00:18:30 +00:00
|
|
|
if (Function *GV = dyn_cast<Function>(Operands[0])) {
|
2004-04-17 22:58:41 +00:00
|
|
|
Operands.erase(Operands.begin());
|
2004-07-18 00:18:30 +00:00
|
|
|
return ConstantFoldCall(cast<Function>(GV), Operands);
|
2004-04-17 22:58:41 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
case Instruction::GetElementPtr:
|
|
|
|
Constant *Base = Operands[0];
|
|
|
|
Operands.erase(Operands.begin());
|
|
|
|
return ConstantExpr::getGetElementPtr(Base, Operands);
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2004-04-17 18:36:24 +00:00
|
|
|
|
|
|
|
/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
|
|
|
|
/// in the loop that V is derived from. We allow arbitrary operations along the
|
|
|
|
/// way, but the operands of an operation must either be constants or a value
|
|
|
|
/// derived from a constant PHI. If this expression does not fit with these
|
|
|
|
/// constraints, return null.
|
|
|
|
static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
|
|
|
|
// If this is not an instruction, or if this is an instruction outside of the
|
|
|
|
// loop, it can't be derived from a loop PHI.
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
|
|
if (I == 0 || !L->contains(I->getParent())) return 0;
|
|
|
|
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(I))
|
|
|
|
if (L->getHeader() == I->getParent())
|
|
|
|
return PN;
|
|
|
|
else
|
|
|
|
// We don't currently keep track of the control flow needed to evaluate
|
|
|
|
// PHIs, so we cannot handle PHIs inside of loops.
|
|
|
|
return 0;
|
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
// If we won't be able to constant fold this expression even if the operands
|
|
|
|
// are constants, return early.
|
|
|
|
if (!CanConstantFold(I)) return 0;
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
// Otherwise, we can evaluate this instruction if all of its operands are
|
|
|
|
// constant or derived from a PHI node themselves.
|
|
|
|
PHINode *PHI = 0;
|
|
|
|
for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
|
2004-04-17 18:36:24 +00:00
|
|
|
if (!(isa<Constant>(I->getOperand(Op)) ||
|
2004-04-17 22:58:41 +00:00
|
|
|
isa<GlobalValue>(I->getOperand(Op)))) {
|
|
|
|
PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
|
|
|
|
if (P == 0) return 0; // Not evolving from PHI
|
|
|
|
if (PHI == 0)
|
|
|
|
PHI = P;
|
|
|
|
else if (PHI != P)
|
|
|
|
return 0; // Evolving from multiple different PHIs.
|
|
|
|
}
|
2004-04-17 18:36:24 +00:00
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
// This is a expression evolving from a constant PHI!
|
|
|
|
return PHI;
|
2004-04-17 18:36:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/// EvaluateExpression - Given an expression that passes the
|
|
|
|
/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
|
|
|
|
/// in the loop has the value PHIVal. If we can't fold this expression for some
|
|
|
|
/// reason, return null.
|
|
|
|
static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
|
|
|
|
if (isa<PHINode>(V)) return PHIVal;
|
|
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
2004-07-18 00:18:30 +00:00
|
|
|
return GV;
|
|
|
|
if (Constant *C = dyn_cast<Constant>(V)) return C;
|
2004-04-17 18:36:24 +00:00
|
|
|
Instruction *I = cast<Instruction>(V);
|
|
|
|
|
|
|
|
std::vector<Constant*> Operands;
|
|
|
|
Operands.resize(I->getNumOperands());
|
|
|
|
|
|
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
|
|
Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
|
|
|
|
if (Operands[i] == 0) return 0;
|
|
|
|
}
|
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
return ConstantFold(I, Operands);
|
|
|
|
}
|
2004-04-17 18:36:24 +00:00
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
|
|
|
|
/// in the header of its containing loop, we know the loop executes a
|
|
|
|
/// constant number of times, and the PHI node is just a recurrence
|
|
|
|
/// involving constants, fold it.
|
|
|
|
Constant *ScalarEvolutionsImpl::
|
|
|
|
getConstantEvolutionLoopExitValue(PHINode *PN, uint64_t Its, const Loop *L) {
|
|
|
|
std::map<PHINode*, Constant*>::iterator I =
|
|
|
|
ConstantEvolutionLoopExitValue.find(PN);
|
|
|
|
if (I != ConstantEvolutionLoopExitValue.end())
|
|
|
|
return I->second;
|
2004-04-17 18:36:24 +00:00
|
|
|
|
2005-04-21 21:13:18 +00:00
|
|
|
if (Its > MaxBruteForceIterations)
|
2004-04-17 22:58:41 +00:00
|
|
|
return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
|
|
|
|
|
|
|
|
Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
|
|
|
|
|
|
|
|
// Since the loop is canonicalized, the PHI node must have two entries. One
|
|
|
|
// entry must be a constant (coming in from outside of the loop), and the
|
|
|
|
// second must be derived from the same PHI.
|
|
|
|
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
|
|
|
|
Constant *StartCST =
|
|
|
|
dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
|
|
|
|
if (StartCST == 0)
|
|
|
|
return RetVal = 0; // Must be a constant.
|
|
|
|
|
|
|
|
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
|
|
|
|
PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
|
|
|
|
if (PN2 != PN)
|
|
|
|
return RetVal = 0; // Not derived from same PHI.
|
|
|
|
|
|
|
|
// Execute the loop symbolically to determine the exit value.
|
|
|
|
unsigned IterationNum = 0;
|
|
|
|
unsigned NumIterations = Its;
|
|
|
|
if (NumIterations != Its)
|
|
|
|
return RetVal = 0; // More than 2^32 iterations??
|
|
|
|
|
|
|
|
for (Constant *PHIVal = StartCST; ; ++IterationNum) {
|
|
|
|
if (IterationNum == NumIterations)
|
|
|
|
return RetVal = PHIVal; // Got exit value!
|
|
|
|
|
|
|
|
// Compute the value of the PHI node for the next iteration.
|
|
|
|
Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
|
|
|
|
if (NextPHI == PHIVal)
|
|
|
|
return RetVal = NextPHI; // Stopped evolving!
|
|
|
|
if (NextPHI == 0)
|
|
|
|
return 0; // Couldn't evaluate!
|
|
|
|
PHIVal = NextPHI;
|
2004-04-17 18:36:24 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// ComputeIterationCountExhaustively - If the trip is known to execute a
|
|
|
|
/// constant number of times (the condition evolves only from constants),
|
|
|
|
/// try to evaluate a few iterations of the loop until we get the exit
|
|
|
|
/// condition gets a value of ExitWhen (true or false). If we cannot
|
|
|
|
/// evaluate the trip count of the loop, return UnknownValue.
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::
|
|
|
|
ComputeIterationCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
|
|
|
|
PHINode *PN = getConstantEvolvingPHI(Cond, L);
|
|
|
|
if (PN == 0) return UnknownValue;
|
|
|
|
|
|
|
|
// Since the loop is canonicalized, the PHI node must have two entries. One
|
|
|
|
// entry must be a constant (coming in from outside of the loop), and the
|
|
|
|
// second must be derived from the same PHI.
|
|
|
|
bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
|
|
|
|
Constant *StartCST =
|
|
|
|
dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
|
|
|
|
if (StartCST == 0) return UnknownValue; // Must be a constant.
|
|
|
|
|
|
|
|
Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
|
|
|
|
PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
|
|
|
|
if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
|
|
|
|
|
|
|
|
// Okay, we find a PHI node that defines the trip count of this loop. Execute
|
|
|
|
// the loop symbolically to determine when the condition gets a value of
|
|
|
|
// "ExitWhen".
|
|
|
|
unsigned IterationNum = 0;
|
|
|
|
unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
|
|
|
|
for (Constant *PHIVal = StartCST;
|
|
|
|
IterationNum != MaxIterations; ++IterationNum) {
|
|
|
|
ConstantBool *CondVal =
|
|
|
|
dyn_cast_or_null<ConstantBool>(EvaluateExpression(Cond, PHIVal));
|
|
|
|
if (!CondVal) return UnknownValue; // Couldn't symbolically evaluate.
|
2004-04-17 22:58:41 +00:00
|
|
|
|
2004-04-17 18:36:24 +00:00
|
|
|
if (CondVal->getValue() == ExitWhen) {
|
2004-04-17 22:58:41 +00:00
|
|
|
ConstantEvolutionLoopExitValue[PN] = PHIVal;
|
2004-04-17 18:36:24 +00:00
|
|
|
++NumBruteForceTripCountsComputed;
|
|
|
|
return SCEVConstant::get(ConstantUInt::get(Type::UIntTy, IterationNum));
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
// Compute the value of the PHI node for the next iteration.
|
|
|
|
Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
|
|
|
|
if (NextPHI == 0 || NextPHI == PHIVal)
|
2004-04-17 18:36:24 +00:00
|
|
|
return UnknownValue; // Couldn't evaluate or not making progress...
|
2004-04-17 22:58:41 +00:00
|
|
|
PHIVal = NextPHI;
|
2004-04-17 18:36:24 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Too many iterations were needed to evaluate.
|
2004-04-02 20:23:17 +00:00
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// getSCEVAtScope - Compute the value of the specified expression within the
|
|
|
|
/// indicated loop (which may be null to indicate in no loop). If the
|
|
|
|
/// expression cannot be evaluated, return UnknownValue.
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::getSCEVAtScope(SCEV *V, const Loop *L) {
|
|
|
|
// FIXME: this should be turned into a virtual method on SCEV!
|
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
if (isa<SCEVConstant>(V)) return V;
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-17 22:58:41 +00:00
|
|
|
// If this instruction is evolves from a constant-evolving PHI, compute the
|
|
|
|
// exit value from the loop without using SCEVs.
|
|
|
|
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
|
|
|
|
const Loop *LI = this->LI[I->getParent()];
|
|
|
|
if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(I))
|
|
|
|
if (PN->getParent() == LI->getHeader()) {
|
|
|
|
// Okay, there is no closed form solution for the PHI node. Check
|
|
|
|
// to see if the loop that contains it has a known iteration count.
|
|
|
|
// If so, we may be able to force computation of the exit value.
|
|
|
|
SCEVHandle IterationCount = getIterationCount(LI);
|
|
|
|
if (SCEVConstant *ICC = dyn_cast<SCEVConstant>(IterationCount)) {
|
|
|
|
// Okay, we know how many times the containing loop executes. If
|
|
|
|
// this is a constant evolving PHI node, get the final value at
|
|
|
|
// the specified iteration number.
|
|
|
|
Constant *RV = getConstantEvolutionLoopExitValue(PN,
|
|
|
|
ICC->getValue()->getRawValue(),
|
|
|
|
LI);
|
|
|
|
if (RV) return SCEVUnknown::get(RV);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Okay, this is a some expression that we cannot symbolically evaluate
|
|
|
|
// into a SCEV. Check to see if it's possible to symbolically evaluate
|
|
|
|
// the arguments into constants, and if see, try to constant propagate the
|
|
|
|
// result. This is particularly useful for computing loop exit values.
|
|
|
|
if (CanConstantFold(I)) {
|
|
|
|
std::vector<Constant*> Operands;
|
|
|
|
Operands.reserve(I->getNumOperands());
|
|
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
|
|
Value *Op = I->getOperand(i);
|
|
|
|
if (Constant *C = dyn_cast<Constant>(Op)) {
|
|
|
|
Operands.push_back(C);
|
|
|
|
} else {
|
|
|
|
SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
|
|
|
|
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
|
|
|
|
Operands.push_back(ConstantExpr::getCast(SC->getValue(),
|
|
|
|
Op->getType()));
|
|
|
|
else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
|
|
|
|
if (Constant *C = dyn_cast<Constant>(SU->getValue()))
|
|
|
|
Operands.push_back(ConstantExpr::getCast(C, Op->getType()));
|
|
|
|
else
|
|
|
|
return V;
|
|
|
|
} else {
|
|
|
|
return V;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return SCEVUnknown::get(ConstantFold(I, Operands));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is some other type of SCEVUnknown, just return it.
|
|
|
|
return V;
|
|
|
|
}
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
|
|
|
|
// Avoid performing the look-up in the common case where the specified
|
|
|
|
// expression has no loop-variant portions.
|
|
|
|
for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
|
|
|
|
SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
|
|
|
|
if (OpAtScope != Comm->getOperand(i)) {
|
|
|
|
if (OpAtScope == UnknownValue) return UnknownValue;
|
|
|
|
// Okay, at least one of these operands is loop variant but might be
|
|
|
|
// foldable. Build a new instance of the folded commutative expression.
|
2004-04-17 22:58:41 +00:00
|
|
|
std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
|
2004-04-02 20:23:17 +00:00
|
|
|
NewOps.push_back(OpAtScope);
|
|
|
|
|
|
|
|
for (++i; i != e; ++i) {
|
|
|
|
OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
|
|
|
|
if (OpAtScope == UnknownValue) return UnknownValue;
|
|
|
|
NewOps.push_back(OpAtScope);
|
|
|
|
}
|
|
|
|
if (isa<SCEVAddExpr>(Comm))
|
|
|
|
return SCEVAddExpr::get(NewOps);
|
|
|
|
assert(isa<SCEVMulExpr>(Comm) && "Only know about add and mul!");
|
|
|
|
return SCEVMulExpr::get(NewOps);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If we got here, all operands are loop invariant.
|
|
|
|
return Comm;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(V)) {
|
|
|
|
SCEVHandle LHS = getSCEVAtScope(UDiv->getLHS(), L);
|
|
|
|
if (LHS == UnknownValue) return LHS;
|
|
|
|
SCEVHandle RHS = getSCEVAtScope(UDiv->getRHS(), L);
|
|
|
|
if (RHS == UnknownValue) return RHS;
|
|
|
|
if (LHS == UDiv->getLHS() && RHS == UDiv->getRHS())
|
|
|
|
return UDiv; // must be loop invariant
|
|
|
|
return SCEVUDivExpr::get(LHS, RHS);
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is a loop recurrence for a loop that does not contain L, then we
|
|
|
|
// are dealing with the final value computed by the loop.
|
|
|
|
if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
|
|
|
|
if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
|
|
|
|
// To evaluate this recurrence, we need to know how many times the AddRec
|
|
|
|
// loop iterates. Compute this now.
|
|
|
|
SCEVHandle IterationCount = getIterationCount(AddRec->getLoop());
|
|
|
|
if (IterationCount == UnknownValue) return UnknownValue;
|
|
|
|
IterationCount = getTruncateOrZeroExtend(IterationCount,
|
|
|
|
AddRec->getType());
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// If the value is affine, simplify the expression evaluation to just
|
|
|
|
// Start + Step*IterationCount.
|
|
|
|
if (AddRec->isAffine())
|
|
|
|
return SCEVAddExpr::get(AddRec->getStart(),
|
|
|
|
SCEVMulExpr::get(IterationCount,
|
|
|
|
AddRec->getOperand(1)));
|
|
|
|
|
|
|
|
// Otherwise, evaluate it the hard way.
|
|
|
|
return AddRec->evaluateAtIteration(IterationCount);
|
|
|
|
}
|
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
//assert(0 && "Unknown SCEV type!");
|
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
|
|
|
|
/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
|
|
|
|
/// might be the same) or two SCEVCouldNotCompute objects.
|
|
|
|
///
|
|
|
|
static std::pair<SCEVHandle,SCEVHandle>
|
|
|
|
SolveQuadraticEquation(const SCEVAddRecExpr *AddRec) {
|
|
|
|
assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
|
|
|
|
SCEVConstant *L = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
|
|
|
|
SCEVConstant *M = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
|
|
|
|
SCEVConstant *N = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// We currently can only solve this if the coefficients are constants.
|
|
|
|
if (!L || !M || !N) {
|
|
|
|
SCEV *CNC = new SCEVCouldNotCompute();
|
|
|
|
return std::make_pair(CNC, CNC);
|
|
|
|
}
|
|
|
|
|
|
|
|
Constant *Two = ConstantInt::get(L->getValue()->getType(), 2);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
|
|
|
|
Constant *C = L->getValue();
|
|
|
|
// The B coefficient is M-N/2
|
|
|
|
Constant *B = ConstantExpr::getSub(M->getValue(),
|
|
|
|
ConstantExpr::getDiv(N->getValue(),
|
|
|
|
Two));
|
|
|
|
// The A coefficient is N/2
|
|
|
|
Constant *A = ConstantExpr::getDiv(N->getValue(), Two);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// Compute the B^2-4ac term.
|
|
|
|
Constant *SqrtTerm =
|
|
|
|
ConstantExpr::getMul(ConstantInt::get(C->getType(), 4),
|
|
|
|
ConstantExpr::getMul(A, C));
|
|
|
|
SqrtTerm = ConstantExpr::getSub(ConstantExpr::getMul(B, B), SqrtTerm);
|
|
|
|
|
|
|
|
// Compute floor(sqrt(B^2-4ac))
|
|
|
|
ConstantUInt *SqrtVal =
|
|
|
|
cast<ConstantUInt>(ConstantExpr::getCast(SqrtTerm,
|
|
|
|
SqrtTerm->getType()->getUnsignedVersion()));
|
|
|
|
uint64_t SqrtValV = SqrtVal->getValue();
|
2004-10-25 18:40:08 +00:00
|
|
|
uint64_t SqrtValV2 = (uint64_t)sqrt((double)SqrtValV);
|
2004-04-02 20:23:17 +00:00
|
|
|
// The square root might not be precise for arbitrary 64-bit integer
|
|
|
|
// values. Do some sanity checks to ensure it's correct.
|
|
|
|
if (SqrtValV2*SqrtValV2 > SqrtValV ||
|
|
|
|
(SqrtValV2+1)*(SqrtValV2+1) <= SqrtValV) {
|
|
|
|
SCEV *CNC = new SCEVCouldNotCompute();
|
|
|
|
return std::make_pair(CNC, CNC);
|
|
|
|
}
|
|
|
|
|
|
|
|
SqrtVal = ConstantUInt::get(Type::ULongTy, SqrtValV2);
|
|
|
|
SqrtTerm = ConstantExpr::getCast(SqrtVal, SqrtTerm->getType());
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
Constant *NegB = ConstantExpr::getNeg(B);
|
|
|
|
Constant *TwoA = ConstantExpr::getMul(A, Two);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// The divisions must be performed as signed divisions.
|
|
|
|
const Type *SignedTy = NegB->getType()->getSignedVersion();
|
|
|
|
NegB = ConstantExpr::getCast(NegB, SignedTy);
|
|
|
|
TwoA = ConstantExpr::getCast(TwoA, SignedTy);
|
|
|
|
SqrtTerm = ConstantExpr::getCast(SqrtTerm, SignedTy);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
Constant *Solution1 =
|
|
|
|
ConstantExpr::getDiv(ConstantExpr::getAdd(NegB, SqrtTerm), TwoA);
|
|
|
|
Constant *Solution2 =
|
|
|
|
ConstantExpr::getDiv(ConstantExpr::getSub(NegB, SqrtTerm), TwoA);
|
|
|
|
return std::make_pair(SCEVUnknown::get(Solution1),
|
|
|
|
SCEVUnknown::get(Solution2));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// HowFarToZero - Return the number of times a backedge comparing the specified
|
|
|
|
/// value to zero will execute. If not computable, return UnknownValue
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::HowFarToZero(SCEV *V, const Loop *L) {
|
|
|
|
// If the value is a constant
|
|
|
|
if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
|
|
|
|
// If the value is already zero, the branch will execute zero times.
|
|
|
|
if (C->getValue()->isNullValue()) return C;
|
|
|
|
return UnknownValue; // Otherwise it will loop infinitely.
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
|
|
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
|
|
return UnknownValue;
|
|
|
|
|
|
|
|
if (AddRec->isAffine()) {
|
|
|
|
// If this is an affine expression the execution count of this branch is
|
|
|
|
// equal to:
|
|
|
|
//
|
|
|
|
// (0 - Start/Step) iff Start % Step == 0
|
|
|
|
//
|
|
|
|
// Get the initial value for the loop.
|
|
|
|
SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
|
2004-10-11 04:07:27 +00:00
|
|
|
if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle Step = AddRec->getOperand(1);
|
|
|
|
|
|
|
|
Step = getSCEVAtScope(Step, L->getParentLoop());
|
|
|
|
|
|
|
|
// Figure out if Start % Step == 0.
|
|
|
|
// FIXME: We should add DivExpr and RemExpr operations to our AST.
|
|
|
|
if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
|
|
|
|
if (StepC->getValue()->equalsInt(1)) // N % 1 == 0
|
2005-03-09 05:34:41 +00:00
|
|
|
return SCEV::getNegativeSCEV(Start); // 0 - Start/1 == -Start
|
2004-04-02 20:23:17 +00:00
|
|
|
if (StepC->getValue()->isAllOnesValue()) // N % -1 == 0
|
|
|
|
return Start; // 0 - Start/-1 == Start
|
|
|
|
|
|
|
|
// Check to see if Start is divisible by SC with no remainder.
|
|
|
|
if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
|
|
|
|
ConstantInt *StartCC = StartC->getValue();
|
|
|
|
Constant *StartNegC = ConstantExpr::getNeg(StartCC);
|
|
|
|
Constant *Rem = ConstantExpr::getRem(StartNegC, StepC->getValue());
|
|
|
|
if (Rem->isNullValue()) {
|
|
|
|
Constant *Result =ConstantExpr::getDiv(StartNegC,StepC->getValue());
|
|
|
|
return SCEVUnknown::get(Result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
|
|
|
|
// If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
|
|
|
|
// the quadratic equation to solve it.
|
|
|
|
std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec);
|
|
|
|
SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
|
|
|
|
SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
|
|
|
|
if (R1) {
|
2004-04-02 20:26:46 +00:00
|
|
|
#if 0
|
2004-04-02 20:23:17 +00:00
|
|
|
std::cerr << "HFTZ: " << *V << " - sol#1: " << *R1
|
|
|
|
<< " sol#2: " << *R2 << "\n";
|
2004-04-02 20:26:46 +00:00
|
|
|
#endif
|
2004-04-02 20:23:17 +00:00
|
|
|
// Pick the smallest positive root value.
|
|
|
|
assert(R1->getType()->isUnsigned()&&"Didn't canonicalize to unsigned?");
|
|
|
|
if (ConstantBool *CB =
|
|
|
|
dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
|
|
|
|
R2->getValue()))) {
|
|
|
|
if (CB != ConstantBool::True)
|
|
|
|
std::swap(R1, R2); // R1 is the minimum root now.
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// We can only use this value if the chrec ends up with an exact zero
|
|
|
|
// value at this index. When solving for "X*X != 5", for example, we
|
|
|
|
// should not accept a root of 2.
|
|
|
|
SCEVHandle Val = AddRec->evaluateAtIteration(R1);
|
|
|
|
if (SCEVConstant *EvalVal = dyn_cast<SCEVConstant>(Val))
|
|
|
|
if (EvalVal->getValue()->isNullValue())
|
|
|
|
return R1; // We found a quadratic root!
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// HowFarToNonZero - Return the number of times a backedge checking the
|
|
|
|
/// specified value for nonzero will execute. If not computable, return
|
|
|
|
/// UnknownValue
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::HowFarToNonZero(SCEV *V, const Loop *L) {
|
|
|
|
// Loops that look like: while (X == 0) are very strange indeed. We don't
|
|
|
|
// handle them yet except for the trivial case. This could be expanded in the
|
|
|
|
// future as needed.
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// If the value is a constant, check to see if it is known to be non-zero
|
|
|
|
// already. If so, the backedge will execute zero times.
|
|
|
|
if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
|
|
|
|
Constant *Zero = Constant::getNullValue(C->getValue()->getType());
|
|
|
|
Constant *NonZero = ConstantExpr::getSetNE(C->getValue(), Zero);
|
|
|
|
if (NonZero == ConstantBool::True)
|
|
|
|
return getSCEV(Zero);
|
|
|
|
return UnknownValue; // Otherwise it will loop infinitely.
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// We could implement others, but I really doubt anyone writes loops like
|
|
|
|
// this, and if they did, they would already be constant folded.
|
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
|
2005-08-15 23:33:51 +00:00
|
|
|
/// HowManyLessThans - Return the number of times a backedge containing the
|
|
|
|
/// specified less-than comparison will execute. If not computable, return
|
|
|
|
/// UnknownValue.
|
|
|
|
SCEVHandle ScalarEvolutionsImpl::
|
|
|
|
HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L) {
|
|
|
|
// Only handle: "ADDREC < LoopInvariant".
|
|
|
|
if (!RHS->isLoopInvariant(L)) return UnknownValue;
|
|
|
|
|
|
|
|
SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
|
|
|
|
if (!AddRec || AddRec->getLoop() != L)
|
|
|
|
return UnknownValue;
|
|
|
|
|
|
|
|
if (AddRec->isAffine()) {
|
|
|
|
// FORNOW: We only support unit strides.
|
|
|
|
SCEVHandle One = SCEVUnknown::getIntegerSCEV(1, RHS->getType());
|
|
|
|
if (AddRec->getOperand(1) != One)
|
|
|
|
return UnknownValue;
|
|
|
|
|
|
|
|
// The number of iterations for "[n,+,1] < m", is m-n. However, we don't
|
|
|
|
// know that m is >= n on input to the loop. If it is, the condition return
|
|
|
|
// true zero times. What we really should return, for full generality, is
|
|
|
|
// SMAX(0, m-n). Since we cannot check this, we will instead check for a
|
|
|
|
// canonical loop form: most do-loops will have a check that dominates the
|
|
|
|
// loop, that only enters the loop if [n-1]<m. If we can find this check,
|
|
|
|
// we know that the SMAX will evaluate to m-n, because we know that m >= n.
|
|
|
|
|
|
|
|
// Search for the check.
|
|
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
|
|
BasicBlock *PreheaderDest = L->getHeader();
|
|
|
|
if (Preheader == 0) return UnknownValue;
|
|
|
|
|
|
|
|
BranchInst *LoopEntryPredicate =
|
|
|
|
dyn_cast<BranchInst>(Preheader->getTerminator());
|
|
|
|
if (!LoopEntryPredicate) return UnknownValue;
|
|
|
|
|
|
|
|
// This might be a critical edge broken out. If the loop preheader ends in
|
|
|
|
// an unconditional branch to the loop, check to see if the preheader has a
|
|
|
|
// single predecessor, and if so, look for its terminator.
|
|
|
|
while (LoopEntryPredicate->isUnconditional()) {
|
|
|
|
PreheaderDest = Preheader;
|
|
|
|
Preheader = Preheader->getSinglePredecessor();
|
|
|
|
if (!Preheader) return UnknownValue; // Multiple preds.
|
|
|
|
|
|
|
|
LoopEntryPredicate =
|
|
|
|
dyn_cast<BranchInst>(Preheader->getTerminator());
|
|
|
|
if (!LoopEntryPredicate) return UnknownValue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Now that we found a conditional branch that dominates the loop, check to
|
|
|
|
// see if it is the comparison we are looking for.
|
|
|
|
SetCondInst *SCI =dyn_cast<SetCondInst>(LoopEntryPredicate->getCondition());
|
|
|
|
if (!SCI) return UnknownValue;
|
|
|
|
Value *PreCondLHS = SCI->getOperand(0);
|
|
|
|
Value *PreCondRHS = SCI->getOperand(1);
|
|
|
|
Instruction::BinaryOps Cond;
|
|
|
|
if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
|
|
|
|
Cond = SCI->getOpcode();
|
|
|
|
else
|
|
|
|
Cond = SCI->getInverseCondition();
|
|
|
|
|
|
|
|
switch (Cond) {
|
|
|
|
case Instruction::SetGT:
|
|
|
|
std::swap(PreCondLHS, PreCondRHS);
|
|
|
|
Cond = Instruction::SetLT;
|
|
|
|
// Fall Through.
|
|
|
|
case Instruction::SetLT:
|
|
|
|
if (PreCondLHS->getType()->isInteger() &&
|
|
|
|
PreCondLHS->getType()->isSigned()) {
|
|
|
|
if (RHS != getSCEV(PreCondRHS))
|
|
|
|
return UnknownValue; // Not a comparison against 'm'.
|
|
|
|
|
|
|
|
if (SCEV::getMinusSCEV(AddRec->getOperand(0), One)
|
|
|
|
!= getSCEV(PreCondLHS))
|
|
|
|
return UnknownValue; // Not a comparison against 'n-1'.
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
default: break;
|
|
|
|
}
|
|
|
|
|
|
|
|
//std::cerr << "Computed Loop Trip Count as: " <<
|
|
|
|
// *SCEV::getMinusSCEV(RHS, AddRec->getOperand(0)) << "\n";
|
|
|
|
return SCEV::getMinusSCEV(RHS, AddRec->getOperand(0));
|
|
|
|
}
|
|
|
|
|
|
|
|
return UnknownValue;
|
|
|
|
}
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
/// getNumIterationsInRange - Return the number of iterations of this loop that
|
|
|
|
/// produce values in the specified constant range. Another way of looking at
|
|
|
|
/// this is that it returns the first iteration number where the value is not in
|
|
|
|
/// the condition, thus computing the exit count. If the iteration count can't
|
|
|
|
/// be computed, an instance of SCEVCouldNotCompute is returned.
|
|
|
|
SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range) const {
|
|
|
|
if (Range.isFullSet()) // Infinite loop.
|
|
|
|
return new SCEVCouldNotCompute();
|
|
|
|
|
|
|
|
// If the start is a non-zero constant, shift the range to simplify things.
|
|
|
|
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
|
|
|
|
if (!SC->getValue()->isNullValue()) {
|
|
|
|
std::vector<SCEVHandle> Operands(op_begin(), op_end());
|
2004-04-23 21:29:03 +00:00
|
|
|
Operands[0] = SCEVUnknown::getIntegerSCEV(0, SC->getType());
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle Shifted = SCEVAddRecExpr::get(Operands, getLoop());
|
|
|
|
if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
|
|
|
|
return ShiftedAddRec->getNumIterationsInRange(
|
|
|
|
Range.subtract(SC->getValue()));
|
|
|
|
// This is strange and shouldn't happen.
|
|
|
|
return new SCEVCouldNotCompute();
|
|
|
|
}
|
|
|
|
|
|
|
|
// The only time we can solve this is when we have all constant indices.
|
|
|
|
// Otherwise, we cannot determine the overflow conditions.
|
|
|
|
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
|
|
|
|
if (!isa<SCEVConstant>(getOperand(i)))
|
|
|
|
return new SCEVCouldNotCompute();
|
|
|
|
|
|
|
|
|
|
|
|
// Okay at this point we know that all elements of the chrec are constants and
|
|
|
|
// that the start element is zero.
|
|
|
|
|
|
|
|
// First check to see if the range contains zero. If not, the first
|
|
|
|
// iteration exits.
|
|
|
|
ConstantInt *Zero = ConstantInt::get(getType(), 0);
|
|
|
|
if (!Range.contains(Zero)) return SCEVConstant::get(Zero);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
if (isAffine()) {
|
|
|
|
// If this is an affine expression then we have this situation:
|
|
|
|
// Solve {0,+,A} in Range === Ax in Range
|
|
|
|
|
|
|
|
// Since we know that zero is in the range, we know that the upper value of
|
|
|
|
// the range must be the first possible exit value. Also note that we
|
|
|
|
// already checked for a full range.
|
|
|
|
ConstantInt *Upper = cast<ConstantInt>(Range.getUpper());
|
|
|
|
ConstantInt *A = cast<SCEVConstant>(getOperand(1))->getValue();
|
|
|
|
ConstantInt *One = ConstantInt::get(getType(), 1);
|
|
|
|
|
|
|
|
// The exit value should be (Upper+A-1)/A.
|
|
|
|
Constant *ExitValue = Upper;
|
|
|
|
if (A != One) {
|
|
|
|
ExitValue = ConstantExpr::getSub(ConstantExpr::getAdd(Upper, A), One);
|
|
|
|
ExitValue = ConstantExpr::getDiv(ExitValue, A);
|
|
|
|
}
|
|
|
|
assert(isa<ConstantInt>(ExitValue) &&
|
|
|
|
"Constant folding of integers not implemented?");
|
|
|
|
|
|
|
|
// Evaluate at the exit value. If we really did fall out of the valid
|
|
|
|
// range, then we computed our trip count, otherwise wrap around or other
|
|
|
|
// things must have happened.
|
|
|
|
ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue);
|
|
|
|
if (Range.contains(Val))
|
|
|
|
return new SCEVCouldNotCompute(); // Something strange happened
|
|
|
|
|
|
|
|
// Ensure that the previous value is in the range. This is a sanity check.
|
|
|
|
assert(Range.contains(EvaluateConstantChrecAtConstant(this,
|
|
|
|
ConstantExpr::getSub(ExitValue, One))) &&
|
|
|
|
"Linear scev computation is off in a bad way!");
|
|
|
|
return SCEVConstant::get(cast<ConstantInt>(ExitValue));
|
|
|
|
} else if (isQuadratic()) {
|
|
|
|
// If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
|
|
|
|
// quadratic equation to solve it. To do this, we must frame our problem in
|
|
|
|
// terms of figuring out when zero is crossed, instead of when
|
|
|
|
// Range.getUpper() is crossed.
|
|
|
|
std::vector<SCEVHandle> NewOps(op_begin(), op_end());
|
2005-03-09 05:34:41 +00:00
|
|
|
NewOps[0] = SCEV::getNegativeSCEV(SCEVUnknown::get(Range.getUpper()));
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle NewAddRec = SCEVAddRecExpr::get(NewOps, getLoop());
|
|
|
|
|
|
|
|
// Next, solve the constructed addrec
|
|
|
|
std::pair<SCEVHandle,SCEVHandle> Roots =
|
|
|
|
SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec));
|
|
|
|
SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
|
|
|
|
SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
|
|
|
|
if (R1) {
|
|
|
|
// Pick the smallest positive root value.
|
|
|
|
assert(R1->getType()->isUnsigned() && "Didn't canonicalize to unsigned?");
|
|
|
|
if (ConstantBool *CB =
|
|
|
|
dyn_cast<ConstantBool>(ConstantExpr::getSetLT(R1->getValue(),
|
|
|
|
R2->getValue()))) {
|
|
|
|
if (CB != ConstantBool::True)
|
|
|
|
std::swap(R1, R2); // R1 is the minimum root now.
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// Make sure the root is not off by one. The returned iteration should
|
|
|
|
// not be in the range, but the previous one should be. When solving
|
|
|
|
// for "X*X < 5", for example, we should not return a root of 2.
|
|
|
|
ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
|
|
|
|
R1->getValue());
|
|
|
|
if (Range.contains(R1Val)) {
|
|
|
|
// The next iteration must be out of the range...
|
|
|
|
Constant *NextVal =
|
|
|
|
ConstantExpr::getAdd(R1->getValue(),
|
|
|
|
ConstantInt::get(R1->getType(), 1));
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
|
|
|
|
if (!Range.contains(R1Val))
|
|
|
|
return SCEVUnknown::get(NextVal);
|
|
|
|
return new SCEVCouldNotCompute(); // Something strange happened
|
|
|
|
}
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
// If R1 was not in the range, then it is a good return value. Make
|
|
|
|
// sure that R1-1 WAS in the range though, just in case.
|
|
|
|
Constant *NextVal =
|
|
|
|
ConstantExpr::getSub(R1->getValue(),
|
|
|
|
ConstantInt::get(R1->getType(), 1));
|
|
|
|
R1Val = EvaluateConstantChrecAtConstant(this, NextVal);
|
|
|
|
if (Range.contains(R1Val))
|
|
|
|
return R1;
|
|
|
|
return new SCEVCouldNotCompute(); // Something strange happened
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fallback, if this is a general polynomial, figure out the progression
|
|
|
|
// through brute force: evaluate until we find an iteration that fails the
|
|
|
|
// test. This is likely to be slow, but getting an accurate trip count is
|
|
|
|
// incredibly important, we will be able to simplify the exit test a lot, and
|
|
|
|
// we are almost guaranteed to get a trip count in this case.
|
|
|
|
ConstantInt *TestVal = ConstantInt::get(getType(), 0);
|
|
|
|
ConstantInt *One = ConstantInt::get(getType(), 1);
|
|
|
|
ConstantInt *EndVal = TestVal; // Stop when we wrap around.
|
|
|
|
do {
|
|
|
|
++NumBruteForceEvaluations;
|
|
|
|
SCEVHandle Val = evaluateAtIteration(SCEVConstant::get(TestVal));
|
|
|
|
if (!isa<SCEVConstant>(Val)) // This shouldn't happen.
|
|
|
|
return new SCEVCouldNotCompute();
|
|
|
|
|
|
|
|
// Check to see if we found the value!
|
|
|
|
if (!Range.contains(cast<SCEVConstant>(Val)->getValue()))
|
|
|
|
return SCEVConstant::get(TestVal);
|
|
|
|
|
|
|
|
// Increment to test the next index.
|
|
|
|
TestVal = cast<ConstantInt>(ConstantExpr::getAdd(TestVal, One));
|
|
|
|
} while (TestVal != EndVal);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
return new SCEVCouldNotCompute();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ScalarEvolution Class Implementation
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
bool ScalarEvolution::runOnFunction(Function &F) {
|
|
|
|
Impl = new ScalarEvolutionsImpl(F, getAnalysis<LoopInfo>());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ScalarEvolution::releaseMemory() {
|
|
|
|
delete (ScalarEvolutionsImpl*)Impl;
|
|
|
|
Impl = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
|
|
AU.setPreservesAll();
|
|
|
|
AU.addRequiredTransitive<LoopInfo>();
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVHandle ScalarEvolution::getSCEV(Value *V) const {
|
|
|
|
return ((ScalarEvolutionsImpl*)Impl)->getSCEV(V);
|
|
|
|
}
|
|
|
|
|
2005-08-09 23:36:33 +00:00
|
|
|
/// hasSCEV - Return true if the SCEV for this value has already been
|
|
|
|
/// computed.
|
|
|
|
bool ScalarEvolution::hasSCEV(Value *V) const {
|
2005-08-10 00:59:40 +00:00
|
|
|
return ((ScalarEvolutionsImpl*)Impl)->hasSCEV(V);
|
2005-08-09 23:36:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// setSCEV - Insert the specified SCEV into the map of current SCEVs for
|
|
|
|
/// the specified value.
|
|
|
|
void ScalarEvolution::setSCEV(Value *V, const SCEVHandle &H) {
|
|
|
|
((ScalarEvolutionsImpl*)Impl)->setSCEV(V, H);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
SCEVHandle ScalarEvolution::getIterationCount(const Loop *L) const {
|
|
|
|
return ((ScalarEvolutionsImpl*)Impl)->getIterationCount(L);
|
|
|
|
}
|
|
|
|
|
|
|
|
bool ScalarEvolution::hasLoopInvariantIterationCount(const Loop *L) const {
|
|
|
|
return !isa<SCEVCouldNotCompute>(getIterationCount(L));
|
|
|
|
}
|
|
|
|
|
|
|
|
SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) const {
|
|
|
|
return ((ScalarEvolutionsImpl*)Impl)->getSCEVAtScope(getSCEV(V), L);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ScalarEvolution::deleteInstructionFromRecords(Instruction *I) const {
|
|
|
|
return ((ScalarEvolutionsImpl*)Impl)->deleteInstructionFromRecords(I);
|
|
|
|
}
|
|
|
|
|
2005-04-21 21:13:18 +00:00
|
|
|
static void PrintLoopInfo(std::ostream &OS, const ScalarEvolution *SE,
|
2004-04-02 20:23:17 +00:00
|
|
|
const Loop *L) {
|
|
|
|
// Print all inner loops first
|
|
|
|
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
|
|
|
|
PrintLoopInfo(OS, SE, *I);
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-02 20:23:17 +00:00
|
|
|
std::cerr << "Loop " << L->getHeader()->getName() << ": ";
|
2004-04-18 22:14:10 +00:00
|
|
|
|
|
|
|
std::vector<BasicBlock*> ExitBlocks;
|
|
|
|
L->getExitBlocks(ExitBlocks);
|
|
|
|
if (ExitBlocks.size() != 1)
|
2004-04-02 20:23:17 +00:00
|
|
|
std::cerr << "<multiple exits> ";
|
|
|
|
|
|
|
|
if (SE->hasLoopInvariantIterationCount(L)) {
|
|
|
|
std::cerr << *SE->getIterationCount(L) << " iterations! ";
|
|
|
|
} else {
|
|
|
|
std::cerr << "Unpredictable iteration count. ";
|
|
|
|
}
|
|
|
|
|
|
|
|
std::cerr << "\n";
|
|
|
|
}
|
|
|
|
|
2004-12-07 04:03:45 +00:00
|
|
|
void ScalarEvolution::print(std::ostream &OS, const Module* ) const {
|
2004-04-02 20:23:17 +00:00
|
|
|
Function &F = ((ScalarEvolutionsImpl*)Impl)->F;
|
|
|
|
LoopInfo &LI = ((ScalarEvolutionsImpl*)Impl)->LI;
|
|
|
|
|
|
|
|
OS << "Classifying expressions for: " << F.getName() << "\n";
|
|
|
|
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
|
2004-04-27 15:13:33 +00:00
|
|
|
if (I->getType()->isInteger()) {
|
|
|
|
OS << *I;
|
2004-04-02 20:23:17 +00:00
|
|
|
OS << " --> ";
|
2004-04-27 15:13:33 +00:00
|
|
|
SCEVHandle SV = getSCEV(&*I);
|
2004-04-02 20:23:17 +00:00
|
|
|
SV->print(OS);
|
|
|
|
OS << "\t\t";
|
2005-04-21 21:13:18 +00:00
|
|
|
|
2004-04-27 15:13:33 +00:00
|
|
|
if ((*I).getType()->isIntegral()) {
|
2004-04-02 20:23:17 +00:00
|
|
|
ConstantRange Bounds = SV->getValueRange();
|
|
|
|
if (!Bounds.isFullSet())
|
|
|
|
OS << "Bounds: " << Bounds << " ";
|
|
|
|
}
|
|
|
|
|
2004-04-27 15:13:33 +00:00
|
|
|
if (const Loop *L = LI.getLoopFor((*I).getParent())) {
|
2004-04-02 20:23:17 +00:00
|
|
|
OS << "Exits: ";
|
2004-04-27 15:13:33 +00:00
|
|
|
SCEVHandle ExitValue = getSCEVAtScope(&*I, L->getParentLoop());
|
2004-04-02 20:23:17 +00:00
|
|
|
if (isa<SCEVCouldNotCompute>(ExitValue)) {
|
|
|
|
OS << "<<Unknown>>";
|
|
|
|
} else {
|
|
|
|
OS << *ExitValue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
OS << "\n";
|
|
|
|
}
|
|
|
|
|
|
|
|
OS << "Determining loop execution counts for: " << F.getName() << "\n";
|
|
|
|
for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
|
|
|
|
PrintLoopInfo(OS, this, *I);
|
|
|
|
}
|
|
|
|
|