llvm-6502/lib/Transforms/Scalar/Reassociate.cpp

1124 lines
41 KiB
C++
Raw Normal View History

//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass reassociates commutative expressions in an order that is designed
// to promote better constant propagation, GCSE, LICM, PRE, etc.
//
// For example: 4 + (x + 5) -> x + (4 + 5)
//
// In the implementation of this algorithm, constants are assigned rank = 0,
// function arguments are rank = 1, and other values are assigned ranks
// corresponding to the reverse post order traversal of current function
// (starting at 2), which effectively gives values in deep loops higher rank
// than values not in loops.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "reassociate"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ValueHandle.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/DenseMap.h"
#include <algorithm>
using namespace llvm;
STATISTIC(NumLinear , "Number of insts linearized");
STATISTIC(NumChanged, "Number of insts reassociated");
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
STATISTIC(NumFactor , "Number of multiplies factored");
namespace {
struct ValueEntry {
unsigned Rank;
Value *Op;
ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
};
inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
}
}
#ifndef NDEBUG
/// PrintOps - Print out the expression identified in the Ops list.
///
static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Module *M = I->getParent()->getParent()->getParent();
dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
<< *Ops[0].Op->getType() << '\t';
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
dbgs() << "[ ";
WriteAsOperand(dbgs(), Ops[i].Op, false, M);
dbgs() << ", #" << Ops[i].Rank << "] ";
}
}
#endif
namespace {
class Reassociate : public FunctionPass {
DenseMap<BasicBlock*, unsigned> RankMap;
DenseMap<AssertingVH<>, unsigned> ValueRankMap;
SmallVector<WeakVH, 8> RedoInsts;
SmallVector<WeakVH, 8> DeadInsts;
bool MadeChange;
public:
static char ID; // Pass identification, replacement for typeid
Reassociate() : FunctionPass(ID) {
initializeReassociatePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
}
private:
void BuildRankMap(Function &F);
unsigned getRank(Value *V);
Value *ReassociateExpression(BinaryOperator *I);
void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
unsigned Idx = 0);
Value *OptimizeExpression(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops);
Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
void LinearizeExpr(BinaryOperator *I);
Value *RemoveFactorFromExpression(Value *V, Value *Factor);
void ReassociateInst(BasicBlock::iterator &BBI);
void RemoveDeadBinaryOp(Value *V);
};
}
char Reassociate::ID = 0;
INITIALIZE_PASS(Reassociate, "reassociate",
"Reassociate expressions", false, false)
// Public interface to the Reassociate pass
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
void Reassociate::RemoveDeadBinaryOp(Value *V) {
Instruction *Op = dyn_cast<Instruction>(V);
if (!Op || !isa<BinaryOperator>(Op))
return;
Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
ValueRankMap.erase(Op);
DeadInsts.push_back(Op);
RemoveDeadBinaryOp(LHS);
RemoveDeadBinaryOp(RHS);
}
static bool isUnmovableInstruction(Instruction *I) {
if (I->getOpcode() == Instruction::PHI ||
I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Load ||
I->getOpcode() == Instruction::Invoke ||
(I->getOpcode() == Instruction::Call &&
!isa<DbgInfoIntrinsic>(I)) ||
I->getOpcode() == Instruction::UDiv ||
I->getOpcode() == Instruction::SDiv ||
I->getOpcode() == Instruction::FDiv ||
I->getOpcode() == Instruction::URem ||
I->getOpcode() == Instruction::SRem ||
I->getOpcode() == Instruction::FRem)
return true;
return false;
}
void Reassociate::BuildRankMap(Function &F) {
unsigned i = 2;
// Assign distinct ranks to function arguments
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
ValueRankMap[&*I] = ++i;
ReversePostOrderTraversal<Function*> RPOT(&F);
for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
E = RPOT.end(); I != E; ++I) {
BasicBlock *BB = *I;
unsigned BBRank = RankMap[BB] = ++i << 16;
// Walk the basic block, adding precomputed ranks for any instructions that
// we cannot move. This ensures that the ranks for these instructions are
// all different in the block.
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (isUnmovableInstruction(I))
ValueRankMap[&*I] = ++BBRank;
}
}
unsigned Reassociate::getRank(Value *V) {
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0) {
if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
return 0; // Otherwise it's a global or constant, rank 0.
}
if (unsigned Rank = ValueRankMap[I])
return Rank; // Rank already known?
// If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
// we can reassociate expressions for code motion! Since we do not recurse
// for PHI nodes, we cannot have infinite recursion here, because there
// cannot be loops in the value graph that do not go through PHI nodes.
unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
for (unsigned i = 0, e = I->getNumOperands();
i != e && Rank != MaxRank; ++i)
Rank = std::max(Rank, getRank(I->getOperand(i)));
// If this is a not or neg instruction, do not count it for rank. This
// assures us that X and ~X will have the same rank.
if (!I->getType()->isIntegerTy() ||
(!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
++Rank;
//DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
// << Rank << "\n");
return ValueRankMap[I] = Rank;
}
/// isReassociableOp - Return true if V is an instruction of the specified
/// opcode and if it only has one use.
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
cast<Instruction>(V)->getOpcode() == Opcode)
return cast<BinaryOperator>(V);
return 0;
}
/// LowerNegateToMultiply - Replace 0-X with X*-1.
///
static Instruction *LowerNegateToMultiply(Instruction *Neg,
DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
ValueRankMap.erase(Neg);
Res->takeName(Neg);
Neg->replaceAllUsesWith(Res);
Res->setDebugLoc(Neg->getDebugLoc());
Neg->eraseFromParent();
return Res;
}
// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
// Note that if D is also part of the expression tree that we recurse to
// linearize it as well. Besides that case, this does not recurse into A,B, or
// C.
void Reassociate::LinearizeExpr(BinaryOperator *I) {
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
assert(isReassociableOp(LHS, I->getOpcode()) &&
isReassociableOp(RHS, I->getOpcode()) &&
"Not an expression that needs linearization?");
DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
// Move the RHS instruction to live immediately before I, avoiding breaking
// dominator properties.
RHS->moveBefore(I);
// Move operands around to do the linearization.
I->setOperand(1, RHS->getOperand(0));
RHS->setOperand(0, LHS);
I->setOperand(0, RHS);
// Conservatively clear all the optional flags, which may not hold
// after the reassociation.
I->clearSubclassOptionalData();
LHS->clearSubclassOptionalData();
RHS->clearSubclassOptionalData();
++NumLinear;
MadeChange = true;
DEBUG(dbgs() << "Linearized: " << *I << '\n');
// If D is part of this expression tree, tail recurse.
if (isReassociableOp(I->getOperand(1), I->getOpcode()))
LinearizeExpr(I);
}
/// LinearizeExprTree - Given an associative binary expression tree, traverse
/// all of the uses putting it into canonical form. This forces a left-linear
/// form of the expression (((a+b)+c)+d), and collects information about the
/// rank of the non-tree operands.
///
/// NOTE: These intentionally destroys the expression tree operands (turning
/// them into undef values) to reduce #uses of the values. This means that the
/// caller MUST use something like RewriteExprTree to put the values back in.
///
void Reassociate::LinearizeExprTree(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
unsigned Opcode = I->getOpcode();
// First step, linearize the expression if it is in ((A+B)+(C+D)) form.
BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
// If this is a multiply expression tree and it contains internal negations,
// transform them into multiplies by -1 so they can be reassociated.
if (I->getOpcode() == Instruction::Mul) {
if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
LHSBO = isReassociableOp(LHS, Opcode);
}
if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
RHSBO = isReassociableOp(RHS, Opcode);
}
}
if (!LHSBO) {
if (!RHSBO) {
// Neither the LHS or RHS as part of the tree, thus this is a leaf. As
// such, just remember these operands and their rank.
Ops.push_back(ValueEntry(getRank(LHS), LHS));
Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the leaves out.
I->setOperand(0, UndefValue::get(I->getType()));
I->setOperand(1, UndefValue::get(I->getType()));
return;
}
// Turn X+(Y+Z) -> (Y+Z)+X
std::swap(LHSBO, RHSBO);
std::swap(LHS, RHS);
bool Success = !I->swapOperands();
assert(Success && "swapOperands failed");
Success = false;
MadeChange = true;
} else if (RHSBO) {
// Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the RHS is not
// part of the expression tree.
LinearizeExpr(I);
LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
RHS = I->getOperand(1);
RHSBO = 0;
}
// Okay, now we know that the LHS is a nested expression and that the RHS is
// not. Perform reassociation.
assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
// Move LHS right before I to make sure that the tree expression dominates all
// values.
LHSBO->moveBefore(I);
// Linearize the expression tree on the LHS.
LinearizeExprTree(LHSBO, Ops);
// Remember the RHS operand and its rank.
Ops.push_back(ValueEntry(getRank(RHS), RHS));
// Clear the RHS leaf out.
I->setOperand(1, UndefValue::get(I->getType()));
}
// RewriteExprTree - Now that the operands for this expression tree are
// linearized and optimized, emit them in-order. This function is written to be
// tail recursive.
void Reassociate::RewriteExprTree(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops,
unsigned i) {
if (i+2 == Ops.size()) {
if (I->getOperand(0) != Ops[i].Op ||
I->getOperand(1) != Ops[i+1].Op) {
Value *OldLHS = I->getOperand(0);
DEBUG(dbgs() << "RA: " << *I << '\n');
I->setOperand(0, Ops[i].Op);
I->setOperand(1, Ops[i+1].Op);
// Clear all the optional flags, which may not hold after the
// reassociation if the expression involved more than just this operation.
if (Ops.size() != 2)
I->clearSubclassOptionalData();
DEBUG(dbgs() << "TO: " << *I << '\n');
MadeChange = true;
++NumChanged;
// If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
// delete the extra, now dead, nodes.
RemoveDeadBinaryOp(OldLHS);
}
return;
}
assert(i+2 < Ops.size() && "Ops index out of range!");
if (I->getOperand(1) != Ops[i].Op) {
DEBUG(dbgs() << "RA: " << *I << '\n');
I->setOperand(1, Ops[i].Op);
// Conservatively clear all the optional flags, which may not hold
// after the reassociation.
I->clearSubclassOptionalData();
DEBUG(dbgs() << "TO: " << *I << '\n');
MadeChange = true;
++NumChanged;
}
BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
assert(LHS->getOpcode() == I->getOpcode() &&
"Improper expression tree!");
// Compactify the tree instructions together with each other to guarantee
// that the expression tree is dominated by all of Ops.
LHS->moveBefore(I);
RewriteExprTree(LHS, Ops, i+1);
}
// NegateValue - Insert instructions before the instruction pointed to by BI,
// that computes the negative version of the value specified. The negative
// version of the value is returned, and BI is left pointing at the instruction
// that should be processed next by the reassociation pass.
//
static Value *NegateValue(Value *V, Instruction *BI) {
if (Constant *C = dyn_cast<Constant>(V))
return ConstantExpr::getNeg(C);
// We are trying to expose opportunity for reassociation. One of the things
// that we want to do to achieve this is to push a negation as deep into an
// expression chain as possible, to expose the add instructions. In practice,
// this means that we turn this:
// X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
// so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
// the constants. We assume that instcombine will clean up the mess later if
// we introduce tons of unnecessary negation instructions.
//
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
// Push the negates through the add.
I->setOperand(0, NegateValue(I->getOperand(0), BI));
I->setOperand(1, NegateValue(I->getOperand(1), BI));
// We must move the add instruction here, because the neg instructions do
// not dominate the old add instruction in general. By moving it, we are
// assured that the neg instructions we just inserted dominate the
// instruction we are about to insert after them.
//
I->moveBefore(BI);
I->setName(I->getName()+".neg");
return I;
}
// Okay, we need to materialize a negated version of V with an instruction.
// Scan the use lists of V to see if we have one already.
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
User *U = *UI;
if (!BinaryOperator::isNeg(U)) continue;
// We found one! Now we have to make sure that the definition dominates
// this use. We do this by moving it to the entry block (if it is a
// non-instruction value) or right after the definition. These negates will
// be zapped by reassociate later, so we don't need much finesse here.
BinaryOperator *TheNeg = cast<BinaryOperator>(U);
// Verify that the negate is in this function, V might be a constant expr.
if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
continue;
BasicBlock::iterator InsertPt;
if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
InsertPt = II->getNormalDest()->begin();
} else {
InsertPt = InstInput;
++InsertPt;
}
while (isa<PHINode>(InsertPt)) ++InsertPt;
} else {
InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
}
TheNeg->moveBefore(InsertPt);
return TheNeg;
}
// Insert a 'neg' instruction that subtracts the value from zero to get the
// negation.
return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
}
/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
/// X-Y into (X + -Y).
static bool ShouldBreakUpSubtract(Instruction *Sub) {
// If this is a negation, we can't split it up!
if (BinaryOperator::isNeg(Sub))
return false;
// Don't bother to break this up unless either the LHS is an associable add or
// subtract or if this is only used by one.
if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
isReassociableOp(Sub->getOperand(0), Instruction::Sub))
return true;
if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
isReassociableOp(Sub->getOperand(1), Instruction::Sub))
return true;
if (Sub->hasOneUse() &&
(isReassociableOp(Sub->use_back(), Instruction::Add) ||
isReassociableOp(Sub->use_back(), Instruction::Sub)))
return true;
return false;
}
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
/// only used by an add, transform this into (X+(0-Y)) to promote better
/// reassociation.
static Instruction *BreakUpSubtract(Instruction *Sub,
DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
// Convert a subtract into an add and a neg instruction. This allows sub
// instructions to be commuted with other add instructions.
//
// Calculate the negative value of Operand 1 of the sub instruction,
// and set it as the RHS of the add instruction we just made.
//
Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Instruction *New =
BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
New->takeName(Sub);
// Everyone now refers to the add instruction.
ValueRankMap.erase(Sub);
Sub->replaceAllUsesWith(New);
New->setDebugLoc(Sub->getDebugLoc());
Sub->eraseFromParent();
DEBUG(dbgs() << "Negated: " << *New << '\n');
return New;
}
/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
/// by one, change this into a multiply by a constant to assist with further
/// reassociation.
static Instruction *ConvertShiftToMul(Instruction *Shl,
DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
// If an operand of this shift is a reassociable multiply, or if the shift
// is used by a reassociable multiply or add, turn into a multiply.
if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
(Shl->hasOneUse() &&
(isReassociableOp(Shl->use_back(), Instruction::Mul) ||
isReassociableOp(Shl->use_back(), Instruction::Add)))) {
Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Instruction *Mul =
BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
ValueRankMap.erase(Shl);
Mul->takeName(Shl);
Shl->replaceAllUsesWith(Mul);
Mul->setDebugLoc(Shl->getDebugLoc());
Shl->eraseFromParent();
return Mul;
}
return 0;
}
// Scan backwards and forwards among values with the same rank as element i to
// see if X exists. If X does not exist, return i. This is useful when
// scanning for 'x' when we see '-x' because they both get the same rank.
static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Value *X) {
unsigned XRank = Ops[i].Rank;
unsigned e = Ops.size();
for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
if (Ops[j].Op == X)
return j;
// Scan backwards.
for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
if (Ops[j].Op == X)
return j;
return i;
}
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
/// and returning the result. Insert the tree before I.
static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
if (Ops.size() == 1) return Ops.back();
Value *V1 = Ops.back();
Ops.pop_back();
Value *V2 = EmitAddTreeOfValues(I, Ops);
return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
}
/// RemoveFactorFromExpression - If V is an expression tree that is a
/// multiplication sequence, and if this sequence contains a multiply by Factor,
/// remove Factor from the tree and return the new tree.
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
if (!BO) return 0;
SmallVector<ValueEntry, 8> Factors;
LinearizeExprTree(BO, Factors);
bool FoundFactor = false;
bool NeedsNegate = false;
for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
if (Factors[i].Op == Factor) {
FoundFactor = true;
Factors.erase(Factors.begin()+i);
break;
}
// If this is a negative version of this factor, remove it.
if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
if (FC1->getValue() == -FC2->getValue()) {
FoundFactor = NeedsNegate = true;
Factors.erase(Factors.begin()+i);
break;
}
}
if (!FoundFactor) {
// Make sure to restore the operands to the expression tree.
RewriteExprTree(BO, Factors);
return 0;
}
BasicBlock::iterator InsertPt = BO; ++InsertPt;
// If this was just a single multiply, remove the multiply and return the only
// remaining operand.
if (Factors.size() == 1) {
ValueRankMap.erase(BO);
DeadInsts.push_back(BO);
V = Factors[0].Op;
} else {
RewriteExprTree(BO, Factors);
V = BO;
}
if (NeedsNegate)
V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
return V;
}
/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
/// add its operands as factors, otherwise add V to the list of factors.
///
/// Ops is the top-level list of add operands we're trying to factor.
static void FindSingleUseMultiplyFactors(Value *V,
SmallVectorImpl<Value*> &Factors,
const SmallVectorImpl<ValueEntry> &Ops,
bool IsRoot) {
BinaryOperator *BO;
if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
!(BO = dyn_cast<BinaryOperator>(V)) ||
BO->getOpcode() != Instruction::Mul) {
Factors.push_back(V);
return;
}
// If this value has a single use because it is another input to the add
// tree we're reassociating and we dropped its use, it actually has two
// uses and we can't factor it.
if (!IsRoot) {
for (unsigned i = 0, e = Ops.size(); i != e; ++i)
if (Ops[i].Op == V) {
Factors.push_back(V);
return;
}
}
// Otherwise, add the LHS and RHS to the list of factors.
FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
}
/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
/// instruction. This optimizes based on identities. If it can be reduced to
/// a single Value, it is returned, otherwise the Ops list is mutated as
/// necessary.
static Value *OptimizeAndOrXor(unsigned Opcode,
SmallVectorImpl<ValueEntry> &Ops) {
// Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
// If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
// First, check for X and ~X in the operand list.
assert(i < Ops.size());
if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
unsigned FoundX = FindInOperandList(Ops, i, X);
if (FoundX != i) {
if (Opcode == Instruction::And) // ...&X&~X = 0
return Constant::getNullValue(X->getType());
if (Opcode == Instruction::Or) // ...|X|~X = -1
return Constant::getAllOnesValue(X->getType());
}
}
// Next, check for duplicate pairs of values, which we assume are next to
// each other, due to our sorting criteria.
assert(i < Ops.size());
if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
if (Opcode == Instruction::And || Opcode == Instruction::Or) {
// Drop duplicate values for And and Or.
Ops.erase(Ops.begin()+i);
--i; --e;
++NumAnnihil;
continue;
}
// Drop pairs of values for Xor.
assert(Opcode == Instruction::Xor);
if (e == 2)
return Constant::getNullValue(Ops[0].Op->getType());
// Y ^ X^X -> Y
Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
i -= 1; e -= 2;
++NumAnnihil;
}
}
return 0;
}
/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
/// optimizes based on identities. If it can be reduced to a single Value, it
/// is returned, otherwise the Ops list is mutated as necessary.
Value *Reassociate::OptimizeAdd(Instruction *I,
SmallVectorImpl<ValueEntry> &Ops) {
// Scan the operand lists looking for X and -X pairs. If we find any, we
// can simplify the expression. X+-X == 0. While we're at it, scan for any
// duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
//
// TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
//
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Value *TheOp = Ops[i].Op;
// Check to see if we've seen this operand before. If so, we factor all
// instances of the operand together. Due to our sorting criteria, we know
// that these need to be next to each other in the vector.
if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
// Rescan the list, remove all instances of this operand from the expr.
unsigned NumFound = 0;
do {
Ops.erase(Ops.begin()+i);
++NumFound;
} while (i != Ops.size() && Ops[i].Op == TheOp);
DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
++NumFactor;
// Insert a new multiply.
Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
// Now that we have inserted a multiply, optimize it. This allows us to
// handle cases that require multiple factoring steps, such as this:
// (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
RedoInsts.push_back(Mul);
// If every add operand was a duplicate, return the multiply.
if (Ops.empty())
return Mul;
// Otherwise, we had some input that didn't have the dupe, such as
// "A + A + B" -> "A*2 + B". Add the new multiply to the list of
// things being added by this operation.
Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
--i;
e = Ops.size();
continue;
}
// Check for X and -X in the operand list.
if (!BinaryOperator::isNeg(TheOp))
continue;
Value *X = BinaryOperator::getNegArgument(TheOp);
unsigned FoundX = FindInOperandList(Ops, i, X);
if (FoundX == i)
continue;
// Remove X and -X from the operand list.
if (Ops.size() == 2)
return Constant::getNullValue(X->getType());
Ops.erase(Ops.begin()+i);
if (i < FoundX)
--FoundX;
else
--i; // Need to back up an extra one.
Ops.erase(Ops.begin()+FoundX);
++NumAnnihil;
--i; // Revisit element.
e -= 2; // Removed two elements.
}
// Scan the operand list, checking to see if there are any common factors
// between operands. Consider something like A*A+A*B*C+D. We would like to
// reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
// To efficiently find this, we count the number of times a factor occurs
// for any ADD operands that are MULs.
DenseMap<Value*, unsigned> FactorOccurrences;
// Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
// where they are actually the same multiply.
unsigned MaxOcc = 0;
Value *MaxOccVal = 0;
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
continue;
// Compute all of the factors of this added value.
SmallVector<Value*, 8> Factors;
FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op.
SmallPtrSet<Value*, 8> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Value *Factor = Factors[i];
if (!Duplicates.insert(Factor)) continue;
unsigned Occ = ++FactorOccurrences[Factor];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
// If Factor is a negative constant, add the negated value as a factor
// because we can percolate the negate out. Watch for minint, which
// cannot be positivified.
if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
assert(!Duplicates.count(Factor) &&
"Shouldn't have two constant factors, missed a canonicalize");
unsigned Occ = ++FactorOccurrences[Factor];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
}
}
}
// If any factor occurred more than one time, we can pull it out.
if (MaxOcc > 1) {
DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
++NumFactor;
// Create a new instruction that uses the MaxOccVal twice. If we don't do
// this, we could otherwise run into situations where removing a factor
// from an expression will drop a use of maxocc, and this can cause
// RemoveFactorFromExpression on successive values to behave differently.
Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
SmallVector<Value*, 4> NewMulOps;
for (unsigned i = 0; i != Ops.size(); ++i) {
// Only try to remove factors from expressions we're allowed to.
BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
continue;
if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
// The factorized operand may occur several times. Convert them all in
// one fell swoop.
for (unsigned j = Ops.size(); j != i;) {
--j;
if (Ops[j].Op == Ops[i].Op) {
NewMulOps.push_back(V);
Ops.erase(Ops.begin()+j);
}
}
--i;
}
}
// No need for extra uses anymore.
delete DummyInst;
unsigned NumAddedValues = NewMulOps.size();
Value *V = EmitAddTreeOfValues(I, NewMulOps);
// Now that we have inserted the add tree, optimize it. This allows us to
// handle cases that require multiple factoring steps, such as this:
// A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
(void)NumAddedValues;
V = ReassociateExpression(cast<BinaryOperator>(V));
// Create the multiply.
Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
// Rerun associate on the multiply in case the inner expression turned into
// a multiply. We want to make sure that we keep things in canonical form.
V2 = ReassociateExpression(cast<BinaryOperator>(V2));
// If every add operand included the factor (e.g. "A*B + A*C"), then the
// entire result expression is just the multiply "A*(B+C)".
if (Ops.empty())
return V2;
// Otherwise, we had some input that didn't have the factor, such as
// "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
// things being added by this operation.
Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
}
return 0;
}
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
SmallVectorImpl<ValueEntry> &Ops) {
// Now that we have the linearized expression tree, try to optimize it.
// Start by folding any constants that we found.
bool IterateOptimization = false;
if (Ops.size() == 1) return Ops[0].Op;
unsigned Opcode = I->getOpcode();
if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
Ops.pop_back();
Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
return OptimizeExpression(I, Ops);
}
// Check for destructive annihilation due to a constant being used.
if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
switch (Opcode) {
default: break;
case Instruction::And:
if (CstVal->isZero()) // X & 0 -> 0
return CstVal;
if (CstVal->isAllOnesValue()) // X & -1 -> X
Ops.pop_back();
break;
case Instruction::Mul:
if (CstVal->isZero()) { // X * 0 -> 0
++NumAnnihil;
return CstVal;
}
if (cast<ConstantInt>(CstVal)->isOne())
Ops.pop_back(); // X * 1 -> X
break;
case Instruction::Or:
if (CstVal->isAllOnesValue()) // X | -1 -> -1
return CstVal;
// FALLTHROUGH!
case Instruction::Add:
case Instruction::Xor:
if (CstVal->isZero()) // X [|^+] 0 -> X
Ops.pop_back();
break;
}
if (Ops.size() == 1) return Ops[0].Op;
// Handle destructive annihilation due to identities between elements in the
// argument list here.
switch (Opcode) {
default: break;
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: {
unsigned NumOps = Ops.size();
if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
return Result;
IterateOptimization |= Ops.size() != NumOps;
break;
}
case Instruction::Add: {
unsigned NumOps = Ops.size();
if (Value *Result = OptimizeAdd(I, Ops))
return Result;
IterateOptimization |= Ops.size() != NumOps;
}
break;
//case Instruction::Mul:
}
if (IterateOptimization)
return OptimizeExpression(I, Ops);
return 0;
}
/// ReassociateInst - Inspect and reassociate the instruction at the
/// given position, post-incrementing the position.
void Reassociate::ReassociateInst(BasicBlock::iterator &BBI) {
Instruction *BI = BBI++;
if (BI->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(BI->getOperand(1)))
if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
MadeChange = true;
BI = NI;
}
// Reject cases where it is pointless to do this.
if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() ||
BI->getType()->isVectorTy())
return; // Floating point ops are not associative.
// Do not reassociate boolean (i1) expressions. We want to preserve the
// original order of evaluation for short-circuited comparisons that
// SimplifyCFG has folded to AND/OR expressions. If the expression
// is not further optimized, it is likely to be transformed back to a
// short-circuited form for code gen, and the source order may have been
// optimized for the most likely conditions.
if (BI->getType()->isIntegerTy(1))
return;
// If this is a subtract instruction which is not already in negate form,
// see if we can convert it to X+-Y.
if (BI->getOpcode() == Instruction::Sub) {
if (ShouldBreakUpSubtract(BI)) {
BI = BreakUpSubtract(BI, ValueRankMap);
// Reset the BBI iterator in case BreakUpSubtract changed the
// instruction it points to.
BBI = BI;
++BBI;
MadeChange = true;
} else if (BinaryOperator::isNeg(BI)) {
// Otherwise, this is a negation. See if the operand is a multiply tree
// and if this is not an inner node of a multiply tree.
if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
(!BI->hasOneUse() ||
!isReassociableOp(BI->use_back(), Instruction::Mul))) {
BI = LowerNegateToMultiply(BI, ValueRankMap);
MadeChange = true;
}
}
}
// If this instruction is a commutative binary operator, process it.
if (!BI->isAssociative()) return;
BinaryOperator *I = cast<BinaryOperator>(BI);
// If this is an interior node of a reassociable tree, ignore it until we
// get to the root of the tree, to avoid N^2 analysis.
if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
return;
// If this is an add tree that is used by a sub instruction, ignore it
// until we process the subtract.
if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
return;
ReassociateExpression(I);
}
Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
// First, walk the expression tree, linearizing the tree, collecting the
// operand information.
SmallVector<ValueEntry, 8> Ops;
LinearizeExprTree(I, Ops);
DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
// Now that we have linearized the tree to a list and have gathered all of
// the operands and their ranks, sort the operands by their rank. Use a
// stable_sort so that values with equal ranks will have their relative
// positions maintained (and so the compiler is deterministic). Note that
// this sorts so that the highest ranking values end up at the beginning of
// the vector.
std::stable_sort(Ops.begin(), Ops.end());
// OptimizeExpression - Now that we have the expression tree in a convenient
// sorted form, optimize it globally if possible.
if (Value *V = OptimizeExpression(I, Ops)) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
I->replaceAllUsesWith(V);
if (Instruction *VI = dyn_cast<Instruction>(V))
VI->setDebugLoc(I->getDebugLoc());
RemoveDeadBinaryOp(I);
++NumAnnihil;
return V;
}
// We want to sink immediates as deeply as possible except in the case where
// this is a multiply tree used only by an add, and the immediate is a -1.
// In this case we reassociate to put the negation on the outside so that we
// can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
isa<ConstantInt>(Ops.back().Op) &&
cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
ValueEntry Tmp = Ops.pop_back_val();
Ops.insert(Ops.begin(), Tmp);
}
DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
if (Ops.size() == 1) {
// This expression tree simplified to something that isn't a tree,
// eliminate it.
I->replaceAllUsesWith(Ops[0].Op);
if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
OI->setDebugLoc(I->getDebugLoc());
RemoveDeadBinaryOp(I);
return Ops[0].Op;
}
// Now that we ordered and optimized the expressions, splat them back into
// the expression tree, removing any unneeded nodes.
RewriteExprTree(I, Ops);
return I;
}
bool Reassociate::runOnFunction(Function &F) {
// Recalculate the rank map for F
BuildRankMap(F);
MadeChange = false;
for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
for (BasicBlock::iterator BBI = FI->begin(); BBI != FI->end(); )
ReassociateInst(BBI);
// Now that we're done, revisit any instructions which are likely to
// have secondary reassociation opportunities.
while (!RedoInsts.empty())
if (Value *V = RedoInsts.pop_back_val()) {
BasicBlock::iterator BBI = cast<Instruction>(V);
ReassociateInst(BBI);
}
// Now that we're done, delete any instructions which are no longer used.
while (!DeadInsts.empty())
if (Value *V = DeadInsts.pop_back_val())
RecursivelyDeleteTriviallyDeadInstructions(V);
// We are done with the rank map.
RankMap.clear();
ValueRankMap.clear();
return MadeChange;
}