llvm-6502/lib/Target/SystemZ/SystemZISelDAGToDAG.cpp

997 lines
34 KiB
C++
Raw Normal View History

//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the SystemZ target.
//
//===----------------------------------------------------------------------===//
#include "SystemZTargetMachine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
// Used to build addressing modes.
struct SystemZAddressingMode {
// The shape of the address.
enum AddrForm {
// base+displacement
FormBD,
// base+displacement+index for load and store operands
FormBDXNormal,
// base+displacement+index for load address operands
FormBDXLA,
// base+displacement+index+ADJDYNALLOC
FormBDXDynAlloc
};
AddrForm Form;
// The type of displacement. The enum names here correspond directly
// to the definitions in SystemZOperand.td. We could split them into
// flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
enum DispRange {
Disp12Only,
Disp12Pair,
Disp20Only,
Disp20Only128,
Disp20Pair
};
DispRange DR;
// The parts of the address. The address is equivalent to:
//
// Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
SDValue Base;
int64_t Disp;
SDValue Index;
bool IncludesDynAlloc;
SystemZAddressingMode(AddrForm form, DispRange dr)
: Form(form), DR(dr), Base(), Disp(0), Index(),
IncludesDynAlloc(false) {}
// True if the address can have an index register.
bool hasIndexField() { return Form != FormBD; }
// True if the address can (and must) include ADJDYNALLOC.
bool isDynAlloc() { return Form == FormBDXDynAlloc; }
void dump() {
errs() << "SystemZAddressingMode " << this << '\n';
errs() << " Base ";
if (Base.getNode() != 0)
Base.getNode()->dump();
else
errs() << "null\n";
if (hasIndexField()) {
errs() << " Index ";
if (Index.getNode() != 0)
Index.getNode()->dump();
else
errs() << "null\n";
}
errs() << " Disp " << Disp;
if (IncludesDynAlloc)
errs() << " + ADJDYNALLOC";
errs() << '\n';
}
};
// Return a mask with Count low bits set.
static uint64_t allOnes(unsigned int Count) {
return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
}
// Represents operands 2 to 5 of a ROTATE AND ... SELECTED BITS operation.
// The operands are: Input (R2), Start (I3), End (I4) and Rotate (I5).
// The operand value is effectively (and (rotl Input Rotate) Mask) and
// has BitSize bits.
struct RISBGOperands {
RISBGOperands(SDValue N)
: BitSize(N.getValueType().getSizeInBits()), Mask(allOnes(BitSize)),
Input(N), Start(64 - BitSize), End(63), Rotate(0) {}
unsigned BitSize;
uint64_t Mask;
SDValue Input;
unsigned Start;
unsigned End;
unsigned Rotate;
};
class SystemZDAGToDAGISel : public SelectionDAGISel {
const SystemZTargetLowering &Lowering;
const SystemZSubtarget &Subtarget;
// Used by SystemZOperands.td to create integer constants.
inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
}
// Try to fold more of the base or index of AM into AM, where IsBase
// selects between the base and index.
bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
// Try to describe N in AM, returning true on success.
bool selectAddress(SDValue N, SystemZAddressingMode &AM);
// Extract individual target operands from matched address AM.
void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
SDValue &Base, SDValue &Disp);
void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
SDValue &Base, SDValue &Disp, SDValue &Index);
// Try to match Addr as a FormBD address with displacement type DR.
// Return true on success, storing the base and displacement in
// Base and Disp respectively.
bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
SDValue &Base, SDValue &Disp);
// Try to match Addr as a FormBDX* address of form Form with
// displacement type DR. Return true on success, storing the base,
// displacement and index in Base, Disp and Index respectively.
bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
SystemZAddressingMode::DispRange DR, SDValue Addr,
SDValue &Base, SDValue &Disp, SDValue &Index);
// PC-relative address matching routines used by SystemZOperands.td.
bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
Target = Addr.getOperand(0);
return true;
}
return false;
}
// BD matching routines used by SystemZOperands.td.
bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
}
bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
}
bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
}
bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
}
// BDX matching routines used by SystemZOperands.td.
bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp12Only,
Addr, Base, Disp, Index);
}
bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp12Pair,
Addr, Base, Disp, Index);
}
bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
SystemZAddressingMode::Disp12Only,
Addr, Base, Disp, Index);
}
bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp20Only,
Addr, Base, Disp, Index);
}
bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp20Only128,
Addr, Base, Disp, Index);
}
bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
SystemZAddressingMode::Disp20Pair,
Addr, Base, Disp, Index);
}
bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
SystemZAddressingMode::Disp12Pair,
Addr, Base, Disp, Index);
}
bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
SDValue &Index) {
return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
SystemZAddressingMode::Disp20Pair,
Addr, Base, Disp, Index);
}
// Check whether (or Op (and X InsertMask)) is effectively an insertion
// of X into bits InsertMask of some Y != Op. Return true if so and
// set Op to that Y.
bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask);
// Try to fold some of Ops.Input into other fields of Ops. Return true
// on success.
bool expandRISBG(RISBGOperands &Ops);
// Return an undefined i64 value.
SDValue getUNDEF64(SDLoc DL);
// Convert N to VT, if it isn't already.
SDValue convertTo(SDLoc DL, EVT VT, SDValue N);
// Try to implement AND or shift node N using RISBG with the zero flag set.
// Return the selected node on success, otherwise return null.
SDNode *tryRISBGZero(SDNode *N);
// Try to use RISBG or ROSBG to implement OR node N. Return the selected
// node on success, otherwise return null.
SDNode *tryRISBGOrROSBG(SDNode *N);
// If Op0 is null, then Node is a constant that can be loaded using:
//
// (Opcode UpperVal LowerVal)
//
// If Op0 is nonnull, then Node can be implemented using:
//
// (Opcode (Opcode Op0 UpperVal) LowerVal)
SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
uint64_t UpperVal, uint64_t LowerVal);
bool storeLoadCanUseMVC(SDNode *N) const;
public:
SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel),
Lowering(*TM.getTargetLowering()),
Subtarget(*TM.getSubtargetImpl()) { }
// Override MachineFunctionPass.
virtual const char *getPassName() const LLVM_OVERRIDE {
return "SystemZ DAG->DAG Pattern Instruction Selection";
}
// Override SelectionDAGISel.
virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps)
LLVM_OVERRIDE;
// Include the pieces autogenerated from the target description.
#include "SystemZGenDAGISel.inc"
};
} // end anonymous namespace
FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new SystemZDAGToDAGISel(TM, OptLevel);
}
// Return true if Val should be selected as a displacement for an address
// with range DR. Here we're interested in the range of both the instruction
// described by DR and of any pairing instruction.
static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
switch (DR) {
case SystemZAddressingMode::Disp12Only:
return isUInt<12>(Val);
case SystemZAddressingMode::Disp12Pair:
case SystemZAddressingMode::Disp20Only:
case SystemZAddressingMode::Disp20Pair:
return isInt<20>(Val);
case SystemZAddressingMode::Disp20Only128:
return isInt<20>(Val) && isInt<20>(Val + 8);
}
llvm_unreachable("Unhandled displacement range");
}
// Change the base or index in AM to Value, where IsBase selects
// between the base and index.
static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
SDValue Value) {
if (IsBase)
AM.Base = Value;
else
AM.Index = Value;
}
// The base or index of AM is equivalent to Value + ADJDYNALLOC,
// where IsBase selects between the base and index. Try to fold the
// ADJDYNALLOC into AM.
static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
SDValue Value) {
if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
changeComponent(AM, IsBase, Value);
AM.IncludesDynAlloc = true;
return true;
}
return false;
}
// The base of AM is equivalent to Base + Index. Try to use Index as
// the index register.
static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
SDValue Index) {
if (AM.hasIndexField() && !AM.Index.getNode()) {
AM.Base = Base;
AM.Index = Index;
return true;
}
return false;
}
// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
// between the base and index. Try to fold Op1 into AM's displacement.
static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
SDValue Op0, ConstantSDNode *Op1) {
// First try adjusting the displacement.
int64_t TestDisp = AM.Disp + Op1->getSExtValue();
if (selectDisp(AM.DR, TestDisp)) {
changeComponent(AM, IsBase, Op0);
AM.Disp = TestDisp;
return true;
}
// We could consider forcing the displacement into a register and
// using it as an index, but it would need to be carefully tuned.
return false;
}
bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
bool IsBase) {
SDValue N = IsBase ? AM.Base : AM.Index;
unsigned Opcode = N.getOpcode();
if (Opcode == ISD::TRUNCATE) {
N = N.getOperand(0);
Opcode = N.getOpcode();
}
if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
SDValue Op0 = N.getOperand(0);
SDValue Op1 = N.getOperand(1);
unsigned Op0Code = Op0->getOpcode();
unsigned Op1Code = Op1->getOpcode();
if (Op0Code == SystemZISD::ADJDYNALLOC)
return expandAdjDynAlloc(AM, IsBase, Op1);
if (Op1Code == SystemZISD::ADJDYNALLOC)
return expandAdjDynAlloc(AM, IsBase, Op0);
if (Op0Code == ISD::Constant)
return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
if (Op1Code == ISD::Constant)
return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
if (IsBase && expandIndex(AM, Op0, Op1))
return true;
}
return false;
}
// Return true if an instruction with displacement range DR should be
// used for displacement value Val. selectDisp(DR, Val) must already hold.
static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
assert(selectDisp(DR, Val) && "Invalid displacement");
switch (DR) {
case SystemZAddressingMode::Disp12Only:
case SystemZAddressingMode::Disp20Only:
case SystemZAddressingMode::Disp20Only128:
return true;
case SystemZAddressingMode::Disp12Pair:
// Use the other instruction if the displacement is too large.
return isUInt<12>(Val);
case SystemZAddressingMode::Disp20Pair:
// Use the other instruction if the displacement is small enough.
return !isUInt<12>(Val);
}
llvm_unreachable("Unhandled displacement range");
}
// Return true if Base + Disp + Index should be performed by LA(Y).
static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
// Don't use LA(Y) for constants.
if (!Base)
return false;
// Always use LA(Y) for frame addresses, since we know that the destination
// register is almost always (perhaps always) going to be different from
// the frame register.
if (Base->getOpcode() == ISD::FrameIndex)
return true;
if (Disp) {
// Always use LA(Y) if there is a base, displacement and index.
if (Index)
return true;
// Always use LA if the displacement is small enough. It should always
// be no worse than AGHI (and better if it avoids a move).
if (isUInt<12>(Disp))
return true;
// For similar reasons, always use LAY if the constant is too big for AGHI.
// LAY should be no worse than AGFI.
if (!isInt<16>(Disp))
return true;
} else {
// Don't use LA for plain registers.
if (!Index)
return false;
// Don't use LA for plain addition if the index operand is only used
// once. It should be a natural two-operand addition in that case.
if (Index->hasOneUse())
return false;
// Prefer addition if the second operation is sign-extended, in the
// hope of using AGF.
unsigned IndexOpcode = Index->getOpcode();
if (IndexOpcode == ISD::SIGN_EXTEND ||
IndexOpcode == ISD::SIGN_EXTEND_INREG)
return false;
}
// Don't use LA for two-operand addition if either operand is only
// used once. The addition instructions are better in that case.
if (Base->hasOneUse())
return false;
return true;
}
// Return true if Addr is suitable for AM, updating AM if so.
bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
SystemZAddressingMode &AM) {
// Start out assuming that the address will need to be loaded separately,
// then try to extend it as much as we can.
AM.Base = Addr;
// First try treating the address as a constant.
if (Addr.getOpcode() == ISD::Constant &&
expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
;
else
// Otherwise try expanding each component.
while (expandAddress(AM, true) ||
(AM.Index.getNode() && expandAddress(AM, false)))
continue;
// Reject cases where it isn't profitable to use LA(Y).
if (AM.Form == SystemZAddressingMode::FormBDXLA &&
!shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
return false;
// Reject cases where the other instruction in a pair should be used.
if (!isValidDisp(AM.DR, AM.Disp))
return false;
// Make sure that ADJDYNALLOC is included where necessary.
if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
return false;
DEBUG(AM.dump());
return true;
}
// Insert a node into the DAG at least before Pos. This will reposition
// the node as needed, and will assign it a node ID that is <= Pos's ID.
// Note that this does *not* preserve the uniqueness of node IDs!
// The selection DAG must no longer depend on their uniqueness when this
// function is used.
static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
if (N.getNode()->getNodeId() == -1 ||
N.getNode()->getNodeId() > Pos->getNodeId()) {
DAG->RepositionNode(Pos, N.getNode());
N.getNode()->setNodeId(Pos->getNodeId());
}
}
void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
EVT VT, SDValue &Base,
SDValue &Disp) {
Base = AM.Base;
if (!Base.getNode())
// Register 0 means "no base". This is mostly useful for shifts.
Base = CurDAG->getRegister(0, VT);
else if (Base.getOpcode() == ISD::FrameIndex) {
// Lower a FrameIndex to a TargetFrameIndex.
int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
} else if (Base.getValueType() != VT) {
// Truncate values from i64 to i32, for shifts.
assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
"Unexpected truncation");
SDLoc DL(Base);
SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
insertDAGNode(CurDAG, Base.getNode(), Trunc);
Base = Trunc;
}
// Lower the displacement to a TargetConstant.
Disp = CurDAG->getTargetConstant(AM.Disp, VT);
}
void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
EVT VT, SDValue &Base,
SDValue &Disp, SDValue &Index) {
getAddressOperands(AM, VT, Base, Disp);
Index = AM.Index;
if (!Index.getNode())
// Register 0 means "no index".
Index = CurDAG->getRegister(0, VT);
}
bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
SDValue Addr, SDValue &Base,
SDValue &Disp) {
SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
if (!selectAddress(Addr, AM))
return false;
getAddressOperands(AM, Addr.getValueType(), Base, Disp);
return true;
}
bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
SystemZAddressingMode::DispRange DR,
SDValue Addr, SDValue &Base,
SDValue &Disp, SDValue &Index) {
SystemZAddressingMode AM(Form, DR);
if (!selectAddress(Addr, AM))
return false;
getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
return true;
}
bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
uint64_t InsertMask) {
// We're only interested in cases where the insertion is into some operand
// of Op, rather than into Op itself. The only useful case is an AND.
if (Op.getOpcode() != ISD::AND)
return false;
// We need a constant mask.
ConstantSDNode *MaskNode =
dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
if (!MaskNode)
return false;
// It's not an insertion of Op.getOperand(0) if the two masks overlap.
uint64_t AndMask = MaskNode->getZExtValue();
if (InsertMask & AndMask)
return false;
// It's only an insertion if all bits are covered or are known to be zero.
// The inner check covers all cases but is more expensive.
uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
if (Used != (AndMask | InsertMask)) {
APInt KnownZero, KnownOne;
CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
return false;
}
Op = Op.getOperand(0);
return true;
}
// Return true if Mask matches the regexp 0*1+0*, given that zero masks
// have already been filtered out. Store the first set bit in LSB and
// the number of set bits in Length if so.
static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
unsigned First = findFirstSet(Mask);
uint64_t Top = (Mask >> First) + 1;
if ((Top & -Top) == Top)
{
LSB = First;
Length = findFirstSet(Top);
return true;
}
return false;
}
// Try to update RISBG so that only the bits of Ops.Input in Mask are used.
// Return true on success.
static bool refineRISBGMask(RISBGOperands &RISBG, uint64_t Mask) {
if (RISBG.Rotate != 0)
Mask = (Mask << RISBG.Rotate) | (Mask >> (64 - RISBG.Rotate));
Mask &= RISBG.Mask;
// Reject trivial all-zero masks.
if (Mask == 0)
return false;
// Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
// the msb and End specifies the index of the lsb.
unsigned LSB, Length;
if (isStringOfOnes(Mask, LSB, Length))
{
RISBG.Mask = Mask;
RISBG.Start = 63 - (LSB + Length - 1);
RISBG.End = 63 - LSB;
return true;
}
// Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
// of the low 1s and End specifies the lsb of the high 1s.
if (isStringOfOnes(Mask ^ allOnes(RISBG.BitSize), LSB, Length))
{
assert(LSB > 0 && "Bottom bit must be set");
assert(LSB + Length < RISBG.BitSize && "Top bit must be set");
RISBG.Mask = Mask;
RISBG.Start = 63 - (LSB - 1);
RISBG.End = 63 - (LSB + Length);
return true;
}
return false;
}
bool SystemZDAGToDAGISel::expandRISBG(RISBGOperands &RISBG) {
SDValue N = RISBG.Input;
switch (N.getOpcode()) {
case ISD::AND: {
ConstantSDNode *MaskNode =
dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!MaskNode)
return false;
SDValue Input = N.getOperand(0);
uint64_t Mask = MaskNode->getZExtValue();
if (!refineRISBGMask(RISBG, Mask)) {
// If some bits of Input are already known zeros, those bits will have
// been removed from the mask. See if adding them back in makes the
// mask suitable.
APInt KnownZero, KnownOne;
CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
Mask |= KnownZero.getZExtValue();
if (!refineRISBGMask(RISBG, Mask))
return false;
}
RISBG.Input = Input;
return true;
}
case ISD::ROTL: {
// Any 64-bit rotate left can be merged into the RISBG.
if (RISBG.BitSize != 64)
return false;
ConstantSDNode *CountNode
= dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!CountNode)
return false;
RISBG.Rotate = (RISBG.Rotate + CountNode->getZExtValue()) & 63;
RISBG.Input = N.getOperand(0);
return true;
}
case ISD::SHL: {
// Treat (shl X, count) as (and (rotl X, count), ~0<<count).
ConstantSDNode *CountNode =
dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!CountNode)
return false;
uint64_t Count = CountNode->getZExtValue();
if (Count < 1 ||
Count >= RISBG.BitSize ||
!refineRISBGMask(RISBG, allOnes(RISBG.BitSize - Count) << Count))
return false;
RISBG.Rotate = (RISBG.Rotate + Count) & 63;
RISBG.Input = N.getOperand(0);
return true;
}
case ISD::SRL: {
// Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
// which is similar to SLL above.
ConstantSDNode *CountNode =
dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!CountNode)
return false;
uint64_t Count = CountNode->getZExtValue();
if (Count < 1 ||
Count >= RISBG.BitSize ||
!refineRISBGMask(RISBG, allOnes(RISBG.BitSize - Count)))
return false;
RISBG.Rotate = (RISBG.Rotate - Count) & 63;
RISBG.Input = N.getOperand(0);
return true;
}
case ISD::SRA: {
// Treat (sra X, count) as (rotl X, size-count) as long as the top
// count bits from Ops.Input are ignored.
ConstantSDNode *CountNode =
dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
if (!CountNode)
return false;
uint64_t Count = CountNode->getZExtValue();
if (RISBG.Rotate != 0 ||
Count < 1 ||
Count >= RISBG.BitSize ||
RISBG.Start < 64 - (RISBG.BitSize - Count))
return false;
RISBG.Rotate = -Count & 63;
RISBG.Input = N.getOperand(0);
return true;
}
default:
return false;
}
}
SDValue SystemZDAGToDAGISel::getUNDEF64(SDLoc DL) {
SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64);
return SDValue(N, 0);
}
SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) {
if (N.getValueType() == MVT::i32 && VT == MVT::i64) {
SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
SDNode *Insert = CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG,
DL, VT, getUNDEF64(DL), N, Index);
return SDValue(Insert, 0);
}
if (N.getValueType() == MVT::i64 && VT == MVT::i32) {
SDValue Index = CurDAG->getTargetConstant(SystemZ::subreg_32bit, MVT::i64);
SDNode *Extract = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
DL, VT, N, Index);
return SDValue(Extract, 0);
}
assert(N.getValueType() == VT && "Unexpected value types");
return N;
}
SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
RISBGOperands RISBG(SDValue(N, 0));
unsigned Count = 0;
while (expandRISBG(RISBG))
Count += 1;
// Prefer to use normal shift instructions over RISBG, since they can handle
// all cases and are sometimes shorter. Prefer to use RISBG for ANDs though,
// since it is effectively a three-operand instruction in this case,
// and since it can handle some masks that AND IMMEDIATE can't.
if (Count < (N->getOpcode() == ISD::AND ? 1U : 2U))
return 0;
// Prefer register extensions like LLC over RISBG.
if (RISBG.Rotate == 0 &&
(RISBG.Start == 32 || RISBG.Start == 48 || RISBG.Start == 56) &&
RISBG.End == 63)
return 0;
EVT VT = N->getValueType(0);
SDValue Ops[5] = {
getUNDEF64(SDLoc(N)),
convertTo(SDLoc(N), MVT::i64, RISBG.Input),
CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
};
N = CurDAG->getMachineNode(SystemZ::RISBG, SDLoc(N), MVT::i64, Ops);
return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
}
SDNode *SystemZDAGToDAGISel::tryRISBGOrROSBG(SDNode *N) {
// Try treating each operand of N as the second operand of RISBG or ROSBG
// and see which goes deepest.
RISBGOperands RISBG[] = { N->getOperand(0), N->getOperand(1) };
unsigned Count[] = { 0, 0 };
for (unsigned I = 0; I < 2; ++I)
while (expandRISBG(RISBG[I]))
Count[I] += 1;
// Do nothing if neither operand is suitable.
if (Count[0] == 0 && Count[1] == 0)
return 0;
// Pick the deepest second operand.
unsigned I = Count[0] > Count[1] ? 0 : 1;
SDValue Op0 = N->getOperand(I ^ 1);
// Prefer IC for character insertions from memory.
if ((RISBG[I].Mask & 0xff) == 0)
if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
if (Load->getMemoryVT() == MVT::i8)
return 0;
// See whether we can avoid an AND in the first operand by converting
// ROSBG to RISBG.
unsigned Opcode = SystemZ::ROSBG;
if (detectOrAndInsertion(Op0, RISBG[I].Mask))
Opcode = SystemZ::RISBG;
EVT VT = N->getValueType(0);
SDValue Ops[5] = {
convertTo(SDLoc(N), MVT::i64, Op0),
convertTo(SDLoc(N), MVT::i64, RISBG[I].Input),
CurDAG->getTargetConstant(RISBG[I].Start, MVT::i32),
CurDAG->getTargetConstant(RISBG[I].End, MVT::i32),
CurDAG->getTargetConstant(RISBG[I].Rotate, MVT::i32)
};
N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
}
SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
SDValue Op0, uint64_t UpperVal,
uint64_t LowerVal) {
EVT VT = Node->getValueType(0);
SDLoc DL(Node);
SDValue Upper = CurDAG->getConstant(UpperVal, VT);
if (Op0.getNode())
Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
Upper = SDValue(Select(Upper.getNode()), 0);
SDValue Lower = CurDAG->getConstant(LowerVal, VT);
SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
return Or.getNode();
}
// N is a (store (load ...), ...) pattern. Return true if it can use MVC.
bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
StoreSDNode *Store = cast<StoreSDNode>(N);
LoadSDNode *Load = cast<LoadSDNode>(Store->getValue().getNode());
// MVC is logically a bytewise copy, so can't be used for volatile accesses.
if (Load->isVolatile() || Store->isVolatile())
return false;
// Prefer not to use MVC if either address can use ... RELATIVE LONG
// instructions.
assert(Load->getMemoryVT() == Store->getMemoryVT() &&
"Should already have checked that the types match");
uint64_t Size = Load->getMemoryVT().getStoreSize();
if (Size > 1 && Size <= 8) {
// Prefer LHRL, LRL and LGRL.
if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
return false;
// Prefer STHRL, STRL and STGRL.
if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
return false;
}
// There's no chance of overlap if the load is invariant.
if (Load->isInvariant())
return true;
// If both operands are aligned, they must be equal or not overlap.
if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
return true;
// Otherwise we need to check whether there's an alias.
const Value *V1 = Load->getSrcValue();
const Value *V2 = Store->getSrcValue();
if (!V1 || !V2)
return false;
int64_t End1 = Load->getSrcValueOffset() + Size;
int64_t End2 = Store->getSrcValueOffset() + Size;
return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
}
SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
// Dump information about the Node being selected
DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
// If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
return 0;
}
unsigned Opcode = Node->getOpcode();
SDNode *ResNode = 0;
switch (Opcode) {
case ISD::OR:
if (Node->getOperand(1).getOpcode() != ISD::Constant)
ResNode = tryRISBGOrROSBG(Node);
// Fall through.
case ISD::XOR:
// If this is a 64-bit operation in which both 32-bit halves are nonzero,
// split the operation into two.
if (!ResNode && Node->getValueType(0) == MVT::i64)
if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
uint64_t Val = Op1->getZExtValue();
if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
Val - uint32_t(Val), uint32_t(Val));
}
break;
case ISD::AND:
case ISD::ROTL:
case ISD::SHL:
case ISD::SRL:
ResNode = tryRISBGZero(Node);
break;
case ISD::Constant:
// If this is a 64-bit constant that is out of the range of LLILF,
// LLIHF and LGFI, split it into two 32-bit pieces.
if (Node->getValueType(0) == MVT::i64) {
uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
Val - uint32_t(Val), uint32_t(Val));
}
break;
case ISD::ATOMIC_LOAD_SUB:
// Try to convert subtractions of constants to additions.
if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
uint64_t Value = -Op2->getZExtValue();
EVT VT = Node->getValueType(0);
if (VT == MVT::i32 || isInt<32>(Value)) {
SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
CurDAG->getConstant(int32_t(Value), VT) };
Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
Node->getVTList(), Ops, array_lengthof(Ops));
}
}
break;
}
// Select the default instruction
if (!ResNode)
ResNode = SelectCode(Node);
DEBUG(errs() << "=> ";
if (ResNode == NULL || ResNode == Node)
Node->dump(CurDAG);
else
ResNode->dump(CurDAG);
errs() << "\n";
);
return ResNode;
}
bool SystemZDAGToDAGISel::
SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps) {
assert(ConstraintCode == 'm' && "Unexpected constraint code");
// Accept addresses with short displacements, which are compatible
// with Q, R, S and T. But keep the index operand for future expansion.
SDValue Base, Disp, Index;
if (!selectBDXAddr(SystemZAddressingMode::FormBD,
SystemZAddressingMode::Disp12Only,
Op, Base, Disp, Index))
return true;
OutOps.push_back(Base);
OutOps.push_back(Disp);
OutOps.push_back(Index);
return false;
}