1
0
mirror of https://github.com/c64scene-ar/llvm-6502.git synced 2025-01-01 00:33:09 +00:00
llvm-6502/include/llvm/CodeGen/BinaryObject.h

354 lines
11 KiB
C
Raw Normal View History

//===-- llvm/CodeGen/BinaryObject.h - Binary Object. -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a Binary Object Aka. "blob" for holding data from code
// generators, ready for data to the object module code writters.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_BINARYOBJECT_H
#define LLVM_CODEGEN_BINARYOBJECT_H
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/System/DataTypes.h"
#include <string>
#include <vector>
namespace llvm {
typedef std::vector<uint8_t> BinaryData;
class BinaryObject {
protected:
std::string Name;
bool IsLittleEndian;
bool Is64Bit;
BinaryData Data;
std::vector<MachineRelocation> Relocations;
public:
/// Constructors and destructor
BinaryObject() {}
BinaryObject(bool isLittleEndian, bool is64Bit)
: IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
BinaryObject(const std::string &name, bool isLittleEndian, bool is64Bit)
: Name(name), IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
~BinaryObject() {}
/// getName - get name of BinaryObject
inline std::string getName() const { return Name; }
/// get size of binary data
size_t size() const {
return Data.size();
}
/// get binary data
BinaryData& getData() {
return Data;
}
/// get machine relocations
const std::vector<MachineRelocation>& getRelocations() const {
return Relocations;
}
/// hasRelocations - Return true if 'Relocations' is not empty
bool hasRelocations() const {
return !Relocations.empty();
}
/// emitZeros - This callback is invoked to emit a arbitrary number
/// of zero bytes to the data stream.
inline void emitZeros(unsigned Size) {
for (unsigned i=0; i < Size; ++i)
emitByte(0);
}
/// emitByte - This callback is invoked when a byte needs to be
/// written to the data stream.
inline void emitByte(uint8_t B) {
Data.push_back(B);
}
/// emitWord16 - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16(uint16_t W) {
if (IsLittleEndian)
emitWord16LE(W);
else
emitWord16BE(W);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16LE(uint16_t W) {
Data.push_back((uint8_t)(W >> 0));
Data.push_back((uint8_t)(W >> 8));
}
/// emitWord16BE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16BE(uint16_t W) {
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 0));
}
/// emitWord - This callback is invoked when a word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord(uint64_t W) {
if (!Is64Bit)
emitWord32(W);
else
emitWord64(W);
}
/// emitWord32 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord32(uint32_t W) {
if (IsLittleEndian)
emitWordLE(W);
else
emitWordBE(W);
}
/// emitWord64 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord64(uint64_t W) {
if (IsLittleEndian)
emitDWordLE(W);
else
emitDWordBE(W);
}
/// emitWord64 - This callback is invoked when a x86_fp80 needs to be
/// written to the data stream in correct endian format.
inline void emitWordFP80(const uint64_t *W, unsigned PadSize) {
if (IsLittleEndian) {
emitWord64(W[0]);
emitWord16(W[1]);
} else {
emitWord16(W[1]);
emitWord64(W[0]);
}
emitZeros(PadSize);
}
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitWordLE(uint32_t W) {
Data.push_back((uint8_t)(W >> 0));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 24));
}
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in big-endian format.
///
inline void emitWordBE(uint32_t W) {
Data.push_back((uint8_t)(W >> 24));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 0));
}
/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitDWordLE(uint64_t W) {
Data.push_back((uint8_t)(W >> 0));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 24));
Data.push_back((uint8_t)(W >> 32));
Data.push_back((uint8_t)(W >> 40));
Data.push_back((uint8_t)(W >> 48));
Data.push_back((uint8_t)(W >> 56));
}
/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in big-endian format.
inline void emitDWordBE(uint64_t W) {
Data.push_back((uint8_t)(W >> 56));
Data.push_back((uint8_t)(W >> 48));
Data.push_back((uint8_t)(W >> 40));
Data.push_back((uint8_t)(W >> 32));
Data.push_back((uint8_t)(W >> 24));
Data.push_back((uint8_t)(W >> 16));
Data.push_back((uint8_t)(W >> 8));
Data.push_back((uint8_t)(W >> 0));
}
/// fixByte - This callback is invoked when a byte needs to be
/// fixup the buffer.
inline void fixByte(uint8_t B, uint32_t offset) {
Data[offset] = B;
}
/// fixWord16 - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in correct endian format.
inline void fixWord16(uint16_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord16LE(W, offset);
else
fixWord16BE(W, offset);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in little endian format.
inline void fixWord16LE(uint16_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 0);
Data[++offset] = (uint8_t)(W >> 8);
}
/// fixWord16BE - This callback is invoked when a 16-bit word needs to
/// fixup data stream in big endian format.
inline void fixWord16BE(uint16_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 0);
}
/// emitWord - This callback is invoked when a word needs to
/// fixup the data in correct endian format and correct size.
inline void fixWord(uint64_t W, uint32_t offset) {
if (!Is64Bit)
fixWord32(W, offset);
else
fixWord64(W, offset);
}
/// fixWord32 - This callback is invoked when a 32-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord32(uint32_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord32LE(W, offset);
else
fixWord32BE(W, offset);
}
/// fixWord32LE - This callback is invoked when a 32-bit word needs to
/// fixup the data in little endian format.
inline void fixWord32LE(uint32_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 0);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 24);
}
/// fixWord32BE - This callback is invoked when a 32-bit word needs to
/// fixup the data in big endian format.
inline void fixWord32BE(uint32_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 24);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 0);
}
/// fixWord64 - This callback is invoked when a 64-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord64(uint64_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord64LE(W, offset);
else
fixWord64BE(W, offset);
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in little endian format.
inline void fixWord64LE(uint64_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 0);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 24);
Data[++offset] = (uint8_t)(W >> 32);
Data[++offset] = (uint8_t)(W >> 40);
Data[++offset] = (uint8_t)(W >> 48);
Data[++offset] = (uint8_t)(W >> 56);
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in big endian format.
inline void fixWord64BE(uint64_t W, uint32_t offset) {
Data[offset] = (uint8_t)(W >> 56);
Data[++offset] = (uint8_t)(W >> 48);
Data[++offset] = (uint8_t)(W >> 40);
Data[++offset] = (uint8_t)(W >> 32);
Data[++offset] = (uint8_t)(W >> 24);
Data[++offset] = (uint8_t)(W >> 16);
Data[++offset] = (uint8_t)(W >> 8);
Data[++offset] = (uint8_t)(W >> 0);
}
/// emitAlignment - Pad the data to the specified alignment.
void emitAlignment(unsigned Alignment, uint8_t fill = 0) {
if (Alignment <= 1) return;
unsigned PadSize = -Data.size() & (Alignment-1);
for (unsigned i = 0; i<PadSize; ++i)
Data.push_back(fill);
}
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the data stream.
void emitULEB128Bytes(uint64_t Value) {
do {
uint8_t Byte = (uint8_t)(Value & 0x7f);
Value >>= 7;
if (Value) Byte |= 0x80;
emitByte(Byte);
} while (Value);
}
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the data stream.
void emitSLEB128Bytes(int64_t Value) {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {
uint8_t Byte = (uint8_t)(Value & 0x7f);
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
emitByte(Byte);
} while (IsMore);
}
/// emitString - This callback is invoked when a String needs to be
/// written to the data stream.
void emitString(const std::string &String) {
for (unsigned i = 0, N = static_cast<unsigned>(String.size()); i<N; ++i) {
unsigned char C = String[i];
emitByte(C);
}
emitByte(0);
}
/// getCurrentPCOffset - Return the offset from the start of the emitted
/// buffer that we are currently writing to.
uintptr_t getCurrentPCOffset() const {
return Data.size();
}
/// addRelocation - Whenever a relocatable address is needed, it should be
/// noted with this interface.
void addRelocation(const MachineRelocation& relocation) {
Relocations.push_back(relocation);
}
};
} // end namespace llvm
#endif