Introduce new BinaryObject (blob) class, ELF Writer modified to use it. BinaryObject.h by Aaron Gray

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73333 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Bruno Cardoso Lopes 2009-06-14 07:53:21 +00:00
parent 956244b337
commit ae9163f0e2
7 changed files with 535 additions and 256 deletions

View File

@ -0,0 +1,325 @@
//===-- llvm/CodeGen/BinaryObject.h - Binary Object. -----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a Binary Object Aka. "blob" for holding data from code
// generators, ready for data to the object module code writters.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_BINARYOBJECT_H
#define LLVM_CODEGEN_BINARYOBJECT_H
#include <string>
#include <vector>
namespace llvm {
class MachineRelocation;
typedef std::vector<uint8_t> BinaryData;
class BinaryObject {
protected:
std::string Name;
bool IsLittleEndian;
bool Is64Bit;
BinaryData Data;
std::vector<MachineRelocation> Relocations;
public:
/// Constructors and destructor
BinaryObject() {}
BinaryObject(bool isLittleEndian, bool is64Bit)
: IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
BinaryObject(const std::string &name, bool isLittleEndian, bool is64Bit)
: Name(name), IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
~BinaryObject() {}
/// getName - get name of BinaryObject
inline std::string getName() const { return Name; }
/// get size of binary data
size_t size() const {
return Data.size();
}
/// get binary data
BinaryData& getData() {
return Data;
}
/// get machine relocations
const std::vector<MachineRelocation>& getRelocations() const {
return Relocations;
}
/// emitByte - This callback is invoked when a byte needs to be
/// written to the data stream.
inline void emitByte(uint8_t B) {
Data.push_back(B);
}
/// emitWord16 - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16(uint16_t W) {
if (IsLittleEndian)
emitWord16LE(W);
else
emitWord16BE(W);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16LE(uint16_t W) {
Data.push_back((W >> 0) & 255);
Data.push_back((W >> 8) & 255);
}
/// emitWord16BE - This callback is invoked when a 16-bit word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord16BE(uint16_t W) {
Data.push_back((W >> 8) & 255);
Data.push_back((W >> 0) & 255);
}
/// emitWord - This callback is invoked when a word needs to be
/// written to the data stream in correct endian format and correct size.
inline void emitWord(uint64_t W) {
if (!Is64Bit)
emitWord32(W);
else
emitWord64(W);
}
/// emitWord32 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord32(uint32_t W) {
if (IsLittleEndian)
emitWordLE(W);
else
emitWordBE(W);
}
/// emitWord64 - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in correct endian format.
inline void emitWord64(uint64_t W) {
if (IsLittleEndian)
emitDWordLE(W);
else
emitDWordBE(W);
}
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitWordLE(uint32_t W) {
Data.push_back((W >> 0) & 255);
Data.push_back((W >> 8) & 255);
Data.push_back((W >> 16) & 255);
Data.push_back((W >> 24) & 255);
}
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
/// written to the data stream in big-endian format.
///
inline void emitWordBE(uint32_t W) {
Data.push_back((W >> 24) & 255);
Data.push_back((W >> 16) & 255);
Data.push_back((W >> 8) & 255);
Data.push_back((W >> 0) & 255);
}
/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in little-endian format.
inline void emitDWordLE(uint64_t W) {
Data.push_back(unsigned(W >> 0) & 255);
Data.push_back(unsigned(W >> 8) & 255);
Data.push_back(unsigned(W >> 16) & 255);
Data.push_back(unsigned(W >> 24) & 255);
Data.push_back(unsigned(W >> 32) & 255);
Data.push_back(unsigned(W >> 40) & 255);
Data.push_back(unsigned(W >> 48) & 255);
Data.push_back(unsigned(W >> 56) & 255);
}
/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
/// written to the data stream in big-endian format.
inline void emitDWordBE(uint64_t W) {
Data.push_back(unsigned(W >> 56) & 255);
Data.push_back(unsigned(W >> 48) & 255);
Data.push_back(unsigned(W >> 40) & 255);
Data.push_back(unsigned(W >> 32) & 255);
Data.push_back(unsigned(W >> 24) & 255);
Data.push_back(unsigned(W >> 16) & 255);
Data.push_back(unsigned(W >> 8) & 255);
Data.push_back(unsigned(W >> 0) & 255);
}
/// fixByte - This callback is invoked when a byte needs to be
/// fixup the buffer.
inline void fixByte(uint8_t B, uint32_t offset) {
Data[offset] = B;
}
/// fixWord16 - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in correct endian format.
inline void fixWord16(uint16_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord16LE(W, offset);
else
fixWord16BE(W, offset);
}
/// emitWord16LE - This callback is invoked when a 16-bit word needs to
/// fixup the data stream in little endian format.
inline void fixWord16LE(uint16_t W, uint32_t offset) {
Data[offset++] = W & 255;
Data[offset] = (W >> 8) & 255;
}
/// fixWord16BE - This callback is invoked when a 16-bit word needs to
/// fixup data stream in big endian format.
inline void fixWord16BE(uint16_t W, uint32_t offset) {
Data[offset++] = (W >> 8) & 255;
Data[offset] = W & 255;
}
/// emitWord - This callback is invoked when a word needs to
/// fixup the data in correct endian format and correct size.
inline void fixWord(uint64_t W, uint32_t offset) {
if (!Is64Bit)
fixWord32(W, offset);
else
fixWord64(W, offset);
}
/// fixWord32 - This callback is invoked when a 32-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord32(uint32_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord32LE(W, offset);
else
fixWord32BE(W, offset);
}
/// fixWord32LE - This callback is invoked when a 32-bit word needs to
/// fixup the data in little endian format.
inline void fixWord32LE(uint32_t W, uint32_t offset) {
Data[offset++] = W & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset] = (W >> 24) & 255;
}
/// fixWord32BE - This callback is invoked when a 32-bit word needs to
/// fixup the data in big endian format.
inline void fixWord32BE(uint32_t W, uint32_t offset) {
Data[offset++] = (W >> 24) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset] = W & 255;
}
/// fixWord64 - This callback is invoked when a 64-bit word needs to
/// fixup the data in correct endian format.
inline void fixWord64(uint64_t W, uint32_t offset) {
if (IsLittleEndian)
fixWord64LE(W, offset);
else
fixWord64BE(W, offset);
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in little endian format.
inline void fixWord64LE(uint64_t W, uint32_t offset) {
Data[offset++] = W & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset++] = (W >> 24) & 255;
Data[offset++] = (W >> 32) & 255;
Data[offset++] = (W >> 40) & 255;
Data[offset++] = (W >> 48) & 255;
Data[offset] = (W >> 56) & 255;
}
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
/// fixup the data in big endian format.
inline void fixWord64BE(uint64_t W, uint32_t offset) {
Data[offset++] = (W >> 56) & 255;
Data[offset++] = (W >> 48) & 255;
Data[offset++] = (W >> 40) & 255;
Data[offset++] = (W >> 32) & 255;
Data[offset++] = (W >> 24) & 255;
Data[offset++] = (W >> 16) & 255;
Data[offset++] = (W >> 8) & 255;
Data[offset] = W & 255;
}
/// emitAlignment - Pad the data to the specified alignment.
void emitAlignment(unsigned Alignment) {
if (Alignment <= 1) return;
unsigned PadSize = -Data.size() & (Alignment-1);
for (unsigned i = 0; i<PadSize; ++i)
Data.push_back(0);
}
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
/// written to the data stream.
void emitULEB128Bytes(uint64_t Value) {
do {
unsigned char Byte = Value & 0x7f;
Value >>= 7;
if (Value) Byte |= 0x80;
emitByte(Byte);
} while (Value);
}
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
/// written to the data stream.
void emitSLEB128Bytes(int64_t Value) {
int Sign = Value >> (8 * sizeof(Value) - 1);
bool IsMore;
do {
unsigned char Byte = Value & 0x7f;
Value >>= 7;
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
if (IsMore) Byte |= 0x80;
emitByte(Byte);
} while (IsMore);
}
/// emitString - This callback is invoked when a String needs to be
/// written to the data stream.
void emitString(const std::string &String) {
for (unsigned i = 0, N = static_cast<unsigned>(String.size()); i<N; ++i) {
unsigned char C = String[i];
emitByte(C);
}
emitByte(0);
}
/// getCurrentPCOffset - Return the offset from the start of the emitted
/// buffer that we are currently writing to.
uintptr_t getCurrentPCOffset() const {
return Data.size();
}
/// addRelocation - Whenever a relocatable address is needed, it should be
/// noted with this interface.
void addRelocation(const MachineRelocation& relocation) {
Relocations.push_back(relocation);
}
};
} // end namespace llvm
#endif

View File

@ -29,6 +29,7 @@ namespace llvm {
// e_machine member of the ELF header.
unsigned short EMachine;
TargetMachine &TM;
bool is64Bit, isLittleEndian;
public:
// Machine architectures
@ -49,10 +50,35 @@ namespace llvm {
EM_X86_64 = 62 // AMD64
};
// ELF File classes
enum {
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
// ELF Endianess
enum {
ELFDATA2LSB = 1, // Little-endian object file
ELFDATA2MSB = 2 // Big-endian object file
};
explicit TargetELFWriterInfo(TargetMachine &tm);
virtual ~TargetELFWriterInfo();
unsigned short getEMachine() const { return EMachine; }
unsigned getEFlags() const { return 0; }
unsigned getEIClass() const { return is64Bit ? ELFCLASS64 : ELFCLASS32; }
unsigned getEIData() const {
return isLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
}
/// ELF Header and ELF Section Header Info
unsigned getHdrSize() const { return is64Bit ? 64 : 52; }
unsigned getSHdrSize() const { return is64Bit ? 64 : 40; }
/// Symbol Table Info
unsigned getSymTabEntrySize() const { return is64Bit ? 24 : 16; }
unsigned getSymTabAlignment() const { return is64Bit ? 8 : 4; }
/// getFunctionAlignment - Returns the alignment for function 'F', targets
/// with different alignment constraints should overload this method

View File

@ -10,11 +10,10 @@
// This header contains common, non-processor-specific data structures and
// constants for the ELF file format.
//
// The details of the ELF32 bits in this file are largely based on
// the Tool Interface Standard (TIS) Executable and Linking Format
// (ELF) Specification Version 1.2, May 1995. The ELF64 stuff is not
// standardized, as far as I can tell. It was largely based on information
// I found in OpenBSD header files.
// The details of the ELF32 bits in this file are largely based on the Tool
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
// Version 1.2, May 1995. The ELF64 is based on HP/Intel definition of the
// ELF-64 object file format document, Version 1.5 Draft 2 May 27, 1998
//
//===----------------------------------------------------------------------===//
@ -22,11 +21,13 @@
#define CODEGEN_ELF_H
#include "llvm/GlobalVariable.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineRelocation.h"
#include "llvm/Support/DataTypes.h"
#include <cstring>
namespace llvm {
class BinaryObject;
// Identification Indexes
enum {
@ -47,62 +48,17 @@ namespace llvm {
ET_HIPROC = 0xffff // Processor-specific
};
// Object file classes.
enum {
ELFCLASS32 = 1, // 32-bit object file
ELFCLASS64 = 2 // 64-bit object file
};
// Object file byte orderings.
enum {
ELFDATA2LSB = 1, // Little-endian object file
ELFDATA2MSB = 2 // Big-endian object file
};
// Versioning
enum {
EV_NONE = 0,
EV_CURRENT = 1
};
struct ELFHeader {
// e_machine - This field is the target specific value to emit as the
// e_machine member of the ELF header.
unsigned short e_machine;
// e_flags - The machine flags for the target. This defaults to zero.
unsigned e_flags;
// e_size - Holds the ELF header's size in bytes
unsigned e_ehsize;
// Endianess and ELF Class (64 or 32 bits)
unsigned ByteOrder;
unsigned ElfClass;
unsigned getByteOrder() const { return ByteOrder; }
unsigned getElfClass() const { return ElfClass; }
unsigned getSize() const { return e_ehsize; }
unsigned getMachine() const { return e_machine; }
unsigned getFlags() const { return e_flags; }
ELFHeader(unsigned short machine, unsigned flags,
bool is64Bit, bool isLittleEndian)
: e_machine(machine), e_flags(flags) {
ElfClass = is64Bit ? ELFCLASS64 : ELFCLASS32;
ByteOrder = isLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
e_ehsize = is64Bit ? 64 : 52;
}
};
/// ELFSection - This struct contains information about each section that is
/// emitted to the file. This is eventually turned into the section header
/// table at the end of the file.
struct ELFSection {
// Name of the section
std::string Name;
class ELFSection : public BinaryObject {
public:
// ELF specific fields
unsigned NameIdx; // sh_name - .shstrtab idx of name, once emitted.
unsigned Type; // sh_type - Section contents & semantics
@ -143,8 +99,8 @@ namespace llvm {
SHT_REL = 9, // Relocation entries; no explicit addends.
SHT_SHLIB = 10, // Reserved.
SHT_DYNSYM = 11, // Symbol table.
SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type.
SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type.
SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
};
@ -163,22 +119,9 @@ namespace llvm {
/// SectionIdx - The number of the section in the Section Table.
unsigned short SectionIdx;
/// SectionData - The actual data for this section which we are building
/// up for emission to the file.
std::vector<unsigned char> SectionData;
/// Relocations - The relocations that we have encountered so far in this
/// section that we will need to convert to Elf relocation entries when
/// the file is written.
std::vector<MachineRelocation> Relocations;
/// Section Header Size
static unsigned getSectionHdrSize(bool is64Bit)
{ return is64Bit ? 64 : 40; }
ELFSection(const std::string &name)
: Name(name), Type(0), Flags(0), Addr(0), Offset(0), Size(0),
Link(0), Info(0), Align(0), EntSize(0) {}
ELFSection(const std::string &name, bool isLittleEndian, bool is64Bit)
: BinaryObject(name, isLittleEndian, is64Bit), Type(0), Flags(0), Addr(0),
Offset(0), Size(0), Link(0), Info(0), Align(0), EntSize(0) {}
};
/// ELFSym - This struct contains information about each symbol that is
@ -245,9 +188,6 @@ namespace llvm {
assert(X == (X & 0xF) && "Type value out of range!");
Info = (Info & 0xF0) | X;
}
static unsigned getEntrySize(bool is64Bit)
{ return is64Bit ? 24 : 16; }
};
} // end namespace llvm

View File

@ -13,6 +13,7 @@
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Target/TargetMachine.h"
@ -33,9 +34,10 @@ void ELFCodeEmitter::startFunction(MachineFunction &MF) {
DOUT << "processing function: " << MF.getFunction()->getName() << "\n";
// FIXME: better memory management, this will be replaced by BinaryObjects
ES->SectionData.reserve(4096);
BufferBegin = &ES->SectionData[0];
BufferEnd = BufferBegin + ES->SectionData.capacity();
BinaryData &BD = ES->getData();
BD.reserve(4096);
BufferBegin = &BD[0];
BufferEnd = BufferBegin + BD.capacity();
// Align the output buffer with function alignment, and
// upgrade the section alignment if required
@ -100,7 +102,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
FnSym.Value = FnStartPtr-BufferBegin;
// Finally, add it to the symtab.
EW.SymbolTable.push_back(FnSym);
EW.SymbolList.push_back(FnSym);
// Relocations
// -----------
@ -121,7 +123,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
} else {
assert(0 && "Unhandled relocation type");
}
ES->Relocations.push_back(MR);
ES->addRelocation(MR);
}
Relocations.clear();

View File

@ -37,6 +37,7 @@
#include "llvm/Module.h"
#include "llvm/PassManager.h"
#include "llvm/DerivedTypes.h"
#include "llvm/CodeGen/BinaryObject.h"
#include "llvm/CodeGen/FileWriters.h"
#include "llvm/CodeGen/MachineCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
@ -66,22 +67,23 @@ MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
//===----------------------------------------------------------------------===//
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
: MachineFunctionPass(&ID), O(o), TM(tm), ElfHdr() {
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
: MachineFunctionPass(&ID), O(o), TM(tm),
is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
isLittleEndian(TM.getTargetData()->isLittleEndian()),
ElfHdr(isLittleEndian, is64Bit) {
ElfHdr = new ELFHeader(TM.getELFWriterInfo()->getEMachine(), 0,
is64Bit, isLittleEndian);
TAI = TM.getTargetAsmInfo();
TEW = TM.getELFWriterInfo();
// Create the machine code emitter object for this target.
MCE = new ELFCodeEmitter(*this);
// Inital number of sections
NumSections = 0;
}
ELFWriter::~ELFWriter() {
delete MCE;
delete ElfHdr;
}
// doInitialization - Emit the file header and all of the global variables for
@ -89,10 +91,6 @@ ELFWriter::~ELFWriter() {
bool ELFWriter::doInitialization(Module &M) {
Mang = new Mangler(M);
// Local alias to shortenify coming code.
std::vector<unsigned char> &FH = FileHeader;
OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
// ELF Header
// ----------
// Fields e_shnum e_shstrndx are only known after all section have
@ -101,49 +99,48 @@ bool ELFWriter::doInitialization(Module &M) {
//
// Note
// ----
// FHOut.outaddr method behaves differently for ELF32 and ELF64 writing
// emitWord method behaves differently for ELF32 and ELF64, writing
// 4 bytes in the former and 8 in the last for *_off and *_addr elf types
FHOut.outbyte(0x7f); // e_ident[EI_MAG0]
FHOut.outbyte('E'); // e_ident[EI_MAG1]
FHOut.outbyte('L'); // e_ident[EI_MAG2]
FHOut.outbyte('F'); // e_ident[EI_MAG3]
ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
FHOut.outbyte(ElfHdr->getElfClass()); // e_ident[EI_CLASS]
FHOut.outbyte(ElfHdr->getByteOrder()); // e_ident[EI_DATA]
FHOut.outbyte(EV_CURRENT); // e_ident[EI_VERSION]
ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
FH.resize(16); // e_ident[EI_NIDENT-EI_PAD]
FHOut.outhalf(ET_REL); // e_type
FHOut.outhalf(ElfHdr->getMachine()); // e_machine = target
FHOut.outword(EV_CURRENT); // e_version
FHOut.outaddr(0); // e_entry = 0, no entry point in .o file
FHOut.outaddr(0); // e_phoff = 0, no program header for .o
ELFHdr_e_shoff_Offset = FH.size();
FHOut.outaddr(0); // e_shoff = sec hdr table off in bytes
FHOut.outword(ElfHdr->getFlags()); // e_flags = whatever the target wants
FHOut.outhalf(ElfHdr->getSize()); // e_ehsize = ELF header size
FHOut.outhalf(0); // e_phentsize = prog header entry size
FHOut.outhalf(0); // e_phnum = # prog header entries = 0
ElfHdr.emitWord16(ET_REL); // e_type
ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
ElfHdr.emitWord32(EV_CURRENT); // e_version
ElfHdr.emitWord(0); // e_entry, no entry point in .o file
ElfHdr.emitWord(0); // e_phoff, no program header for .o
ELFHdr_e_shoff_Offset = ElfHdr.size();
ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
// e_shentsize = Section header entry size
FHOut.outhalf(ELFSection::getSectionHdrSize(is64Bit));
ElfHdr.emitWord16(TEW->getSHdrSize());
// e_shnum = # of section header ents
ELFHdr_e_shnum_Offset = FH.size();
FHOut.outhalf(0);
ELFHdr_e_shnum_Offset = ElfHdr.size();
ElfHdr.emitWord16(0); // Placeholder
// e_shstrndx = Section # of '.shstrtab'
ELFHdr_e_shstrndx_Offset = FH.size();
FHOut.outhalf(0);
ELFHdr_e_shstrndx_Offset = ElfHdr.size();
ElfHdr.emitWord16(0); // Placeholder
// Add the null section, which is required to be first in the file.
getSection("", ELFSection::SHT_NULL, 0);
// Start up the symbol table. The first entry in the symtab is the null
// Start up the symbol table. The first entry in the symtab is the null
// entry.
SymbolTable.push_back(ELFSym(0));
SymbolList.push_back(ELFSym(0));
return false;
}
@ -162,7 +159,7 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
ExternalSym.SetType(ELFSym::STT_NOTYPE);
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
SymbolTable.push_back(ExternalSym);
SymbolList.push_back(ExternalSym);
return;
}
@ -185,7 +182,7 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
CommonSym.SetBind(ELFSym::STB_GLOBAL);
CommonSym.SetType(ELFSym::STT_OBJECT);
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
SymbolTable.push_back(CommonSym);
SymbolList.push_back(CommonSym);
getSection(S->getName(), ELFSection::SHT_NOBITS,
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 1);
return;
@ -222,7 +219,7 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
// Set the idx of the .bss section
BSSSym.SectionIdx = BSSSection.SectionIdx;
if (!GV->hasPrivateLinkage())
SymbolTable.push_back(BSSSym);
SymbolList.push_back(BSSSym);
// Reserve space in the .bss section for this symbol.
BSSSection.Size += Size;
@ -262,21 +259,18 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
if (Align > ElfS.Align)
ElfS.Align = Align;
DataBuffer &GblCstBuf = ElfS.SectionData;
OutputBuffer GblCstTab(GblCstBuf, is64Bit, isLittleEndian);
// S.Value should contain the symbol index inside the section,
// and all symbols should start on their required alignment boundary
GblSym.Value = (GblCstBuf.size() + (Align-1)) & (-Align);
GblCstBuf.insert(GblCstBuf.end(), GblSym.Value-GblCstBuf.size(), 0);
GblSym.Value = (ElfS.size() + (Align-1)) & (-Align);
ElfS.emitAlignment(Align);
// Emit the constant symbol to its section
EmitGlobalConstant(CV, GblCstTab);
SymbolTable.push_back(GblSym);
EmitGlobalConstant(CV, ElfS);
SymbolList.push_back(GblSym);
}
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
OutputBuffer &GblCstTab) {
ELFSection &GblS) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = TM.getTargetData();
@ -293,40 +287,40 @@ void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
sizeSoFar += fieldSize + padSize;
// Now print the actual field value.
EmitGlobalConstant(field, GblCstTab);
EmitGlobalConstant(field, GblS);
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
for (unsigned p=0; p < padSize; p++)
GblCstTab.outbyte(0);
GblS.emitByte(0);
}
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
void ELFWriter::EmitGlobalConstant(const Constant *CV, OutputBuffer &GblCstTab) {
void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
const TargetData *TD = TM.getTargetData();
unsigned Size = TD->getTypeAllocSize(CV->getType());
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
if (CVA->isString()) {
std::string GblStr = CVA->getAsString();
GblCstTab.outstring(GblStr, GblStr.length());
GblS.emitString(GblStr);
} else { // Not a string. Print the values in successive locations
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
EmitGlobalConstant(CVA->getOperand(i), GblCstTab);
EmitGlobalConstant(CVA->getOperand(i), GblS);
}
return;
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
EmitGlobalConstantStruct(CVS, GblCstTab);
EmitGlobalConstantStruct(CVS, GblS);
return;
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
if (CFP->getType() == Type::DoubleTy)
GblCstTab.outxword(Val);
GblS.emitWord64(Val);
else if (CFP->getType() == Type::FloatTy)
GblCstTab.outword(Val);
GblS.emitWord32(Val);
else if (CFP->getType() == Type::X86_FP80Ty) {
assert(0 && "X86_FP80Ty global emission not implemented");
} else if (CFP->getType() == Type::PPC_FP128Ty)
@ -334,16 +328,16 @@ void ELFWriter::EmitGlobalConstant(const Constant *CV, OutputBuffer &GblCstTab)
return;
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
if (Size == 4)
GblCstTab.outword(CI->getZExtValue());
GblS.emitWord32(CI->getZExtValue());
else if (Size == 8)
GblCstTab.outxword(CI->getZExtValue());
GblS.emitWord64(CI->getZExtValue());
else
assert(0 && "LargeInt global emission not implemented");
return;
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
const VectorType *PTy = CP->getType();
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
EmitGlobalConstant(CP->getOperand(I), GblCstTab);
EmitGlobalConstant(CP->getOperand(I), GblS);
return;
}
assert(0 && "unknown global constant");
@ -358,26 +352,30 @@ bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
/// doFinalization - Now that the module has been completely processed, emit
/// the ELF file to 'O'.
bool ELFWriter::doFinalization(Module &M) {
/// FIXME: This should be removed when moving to BinaryObjects. Since the
/// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.SectionData
/// FIXME: This should be removed when moving to ObjectCodeEmiter. Since the
/// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.Data
/// vector size for .text sections, so this is a quick dirty fix
ELFSection &TS = getTextSection();
if (TS.Size)
if (TS.Size) {
BinaryData &BD = TS.getData();
for (unsigned e=0; e<TS.Size; ++e)
TS.SectionData.push_back(TS.SectionData[e]);
BD.push_back(BD[e]);
}
// Get .data and .bss section, they should always be present in the binary
// Emit .data section placeholder
getDataSection();
// Emit .bss section placeholder
getBSSSection();
// build data, bss and "common" sections.
// Build and emit data, bss and "common" sections.
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
EmitGlobal(I);
// Emit non-executable stack note
if (TAI->getNonexecutableStackDirective())
getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
getNonExecStackSection();
// Emit the symbol table now, if non-empty.
EmitSymbolTable();
@ -385,10 +383,10 @@ bool ELFWriter::doFinalization(Module &M) {
// Emit the relocation sections.
EmitRelocations();
// Emit the string table for the sections in the ELF file.
// Emit the sections string table.
EmitSectionTableStringTable();
// Emit the sections to the .o file, and emit the section table for the file.
// Dump the sections and section table to the .o file.
OutputSectionsAndSectionTable();
// We are done with the abstract symbols.
@ -404,106 +402,97 @@ bool ELFWriter::doFinalization(Module &M) {
void ELFWriter::EmitRelocations() {
}
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymTabOut'
void ELFWriter::EmitSymbol(OutputBuffer &SymTabOut, ELFSym &Sym) {
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
if (is64Bit) {
SymTabOut.outword(Sym.NameIdx);
SymTabOut.outbyte(Sym.Info);
SymTabOut.outbyte(Sym.Other);
SymTabOut.outhalf(Sym.SectionIdx);
SymTabOut.outaddr64(Sym.Value);
SymTabOut.outxword(Sym.Size);
SymbolTable.emitWord32(Sym.NameIdx);
SymbolTable.emitByte(Sym.Info);
SymbolTable.emitByte(Sym.Other);
SymbolTable.emitWord16(Sym.SectionIdx);
SymbolTable.emitWord64(Sym.Value);
SymbolTable.emitWord64(Sym.Size);
} else {
SymTabOut.outword(Sym.NameIdx);
SymTabOut.outaddr32(Sym.Value);
SymTabOut.outword(Sym.Size);
SymTabOut.outbyte(Sym.Info);
SymTabOut.outbyte(Sym.Other);
SymTabOut.outhalf(Sym.SectionIdx);
SymbolTable.emitWord32(Sym.NameIdx);
SymbolTable.emitWord32(Sym.Value);
SymbolTable.emitWord32(Sym.Size);
SymbolTable.emitByte(Sym.Info);
SymbolTable.emitByte(Sym.Other);
SymbolTable.emitWord16(Sym.SectionIdx);
}
}
/// EmitSectionHeader - Write section 'Section' header in 'TableOut'
/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
/// Section Header Table
void ELFWriter::EmitSectionHeader(OutputBuffer &TableOut, const ELFSection &S) {
TableOut.outword(S.NameIdx);
TableOut.outword(S.Type);
void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
const ELFSection &SHdr) {
SHdrTab.emitWord32(SHdr.NameIdx);
SHdrTab.emitWord32(SHdr.Type);
if (is64Bit) {
TableOut.outxword(S.Flags);
TableOut.outaddr(S.Addr);
TableOut.outaddr(S.Offset);
TableOut.outxword(S.Size);
TableOut.outword(S.Link);
TableOut.outword(S.Info);
TableOut.outxword(S.Align);
TableOut.outxword(S.EntSize);
SHdrTab.emitWord64(SHdr.Flags);
SHdrTab.emitWord(SHdr.Addr);
SHdrTab.emitWord(SHdr.Offset);
SHdrTab.emitWord64(SHdr.Size);
SHdrTab.emitWord32(SHdr.Link);
SHdrTab.emitWord32(SHdr.Info);
SHdrTab.emitWord64(SHdr.Align);
SHdrTab.emitWord64(SHdr.EntSize);
} else {
TableOut.outword(S.Flags);
TableOut.outaddr(S.Addr);
TableOut.outaddr(S.Offset);
TableOut.outword(S.Size);
TableOut.outword(S.Link);
TableOut.outword(S.Info);
TableOut.outword(S.Align);
TableOut.outword(S.EntSize);
SHdrTab.emitWord32(SHdr.Flags);
SHdrTab.emitWord(SHdr.Addr);
SHdrTab.emitWord(SHdr.Offset);
SHdrTab.emitWord32(SHdr.Size);
SHdrTab.emitWord32(SHdr.Link);
SHdrTab.emitWord32(SHdr.Info);
SHdrTab.emitWord32(SHdr.Align);
SHdrTab.emitWord32(SHdr.EntSize);
}
}
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
/// table for it and then the symbol table itself.
void ELFWriter::EmitSymbolTable() {
if (SymbolTable.size() == 1) return; // Only the null entry.
if (SymbolList.size() == 1) return; // Only the null entry.
// FIXME: compact all local symbols to the start of the symtab.
unsigned FirstNonLocalSymbol = 1;
ELFSection &StrTab = getStringTableSection();
DataBuffer &StrTabBuf = StrTab.SectionData;
OutputBuffer StrTabOut(StrTabBuf, is64Bit, isLittleEndian);
// Set the zero'th symbol to a null byte, as required.
StrTabOut.outbyte(0);
StrTab.emitByte(0);
unsigned Index = 1;
for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
for (unsigned i = 1, e = SymbolList.size(); i != e; ++i) {
// Use the name mangler to uniquify the LLVM symbol.
std::string Name = Mang->getValueName(SymbolTable[i].GV);
std::string Name = Mang->getValueName(SymbolList[i].GV);
if (Name.empty()) {
SymbolTable[i].NameIdx = 0;
SymbolList[i].NameIdx = 0;
} else {
SymbolTable[i].NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
StrTabBuf.insert(StrTabBuf.end(), Name.begin(), Name.end());
// Add a null terminator.
StrTabBuf.push_back(0);
SymbolList[i].NameIdx = Index;
StrTab.emitString(Name);
// Keep track of the number of bytes emitted to this section.
Index += Name.size()+1;
}
}
assert(Index == StrTabBuf.size());
assert(Index == StrTab.size());
StrTab.Size = Index;
// Now that we have emitted the string table and know the offset into the
// string table of each symbol, emit the symbol table itself.
ELFSection &SymTab = getSymbolTableSection();
SymTab.Align = is64Bit ? 8 : 4;
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
SymTab.Align = TEW->getSymTabAlignment();
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
// Size of each symtab entry.
SymTab.EntSize = ELFSym::getEntrySize(is64Bit);
SymTab.EntSize = TEW->getSymTabEntrySize();
DataBuffer &SymTabBuf = SymTab.SectionData;
OutputBuffer SymTabOut(SymTabBuf, is64Bit, isLittleEndian);
for (unsigned i = 0, e = SymbolList.size(); i != e; ++i)
EmitSymbol(SymTab, SymbolList[i]);
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i)
EmitSymbol(SymTabOut, SymbolTable[i]);
SymTab.Size = SymTabBuf.size();
SymTab.Size = SymTab.size();
}
/// EmitSectionTableStringTable - This method adds and emits a section for the
@ -515,32 +504,25 @@ void ELFWriter::EmitSectionTableStringTable() {
// Now that we know which section number is the .shstrtab section, update the
// e_shstrndx entry in the ELF header.
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
FHOut.fixhalf(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
// Set the NameIdx of each section in the string table and emit the bytes for
// the string table.
unsigned Index = 0;
DataBuffer &Buf = SHStrTab.SectionData;
for (std::list<ELFSection>::iterator I = SectionList.begin(),
E = SectionList.end(); I != E; ++I) {
// Set the index into the table. Note if we have lots of entries with
// common suffixes, we could memoize them here if we cared.
I->NameIdx = Index;
// Add the name to the output buffer, including the null terminator.
Buf.insert(Buf.end(), I->Name.begin(), I->Name.end());
// Add a null terminator.
Buf.push_back(0);
SHStrTab.emitString(I->getName());
// Keep track of the number of bytes emitted to this section.
Index += I->Name.size()+1;
Index += I->getName().size()+1;
}
// Set the size of .shstrtab now that we know what it is.
assert(Index == Buf.size());
assert(Index == SHStrTab.size());
SHStrTab.Size = Index;
}
@ -549,7 +531,7 @@ void ELFWriter::EmitSectionTableStringTable() {
/// SectionTable.
void ELFWriter::OutputSectionsAndSectionTable() {
// Pass #1: Compute the file offset for each section.
size_t FileOff = FileHeader.size(); // File header first.
size_t FileOff = ElfHdr.size(); // File header first.
// Adjust alignment of all section if needed.
for (std::list<ELFSection>::iterator I = SectionList.begin(),
@ -559,14 +541,14 @@ void ELFWriter::OutputSectionsAndSectionTable() {
if (!I->SectionIdx)
continue;
if (!I->SectionData.size()) {
if (!I->size()) {
I->Offset = FileOff;
continue;
}
// Update Section size
if (!I->Size)
I->Size = I->SectionData.size();
I->Size = I->size();
// Align FileOff to whatever the alignment restrictions of the section are.
if (I->Align)
@ -582,43 +564,40 @@ void ELFWriter::OutputSectionsAndSectionTable() {
// Now that we know where all of the sections will be emitted, set the e_shnum
// entry in the ELF header.
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
FHOut.fixhalf(NumSections, ELFHdr_e_shnum_Offset);
ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
// Now that we know the offset in the file of the section table, update the
// e_shoff address in the ELF header.
FHOut.fixaddr(FileOff, ELFHdr_e_shoff_Offset);
ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
// Now that we know all of the data in the file header, emit it and all of the
// sections!
O.write((char*)&FileHeader[0], FileHeader.size());
FileOff = FileHeader.size();
DataBuffer().swap(FileHeader);
O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
FileOff = ElfHdr.size();
DataBuffer Table;
OutputBuffer TableOut(Table, is64Bit, isLittleEndian);
// Section Header Table blob
BinaryObject SHdrTable(isLittleEndian, is64Bit);
// Emit all of the section data and build the section table itself.
// Emit all of sections to the file and build the section header table.
while (!SectionList.empty()) {
const ELFSection &S = *SectionList.begin();
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.Name
ELFSection &S = *SectionList.begin();
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
<< ", Size: " << S.Size << ", Offset: " << S.Offset
<< ", SectionData Size: " << S.SectionData.size() << "\n";
<< ", SectionData Size: " << S.size() << "\n";
// Align FileOff to whatever the alignment restrictions of the section are.
if (S.Align) {
for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
FileOff != NewFileOff; ++FileOff)
FileOff != NewFileOff; ++FileOff)
O << (char)0xAB;
}
if (S.SectionData.size()) {
O.write((char*)&S.SectionData[0], S.Size);
if (S.size()) {
O.write((char *)&S.getData()[0], S.Size);
FileOff += S.Size;
}
EmitSectionHeader(TableOut, S);
EmitSectionHeader(SHdrTable, S);
SectionList.pop_front();
}
@ -628,5 +607,5 @@ void ELFWriter::OutputSectionsAndSectionTable() {
O << (char)0xAB;
// Emit the section table itself.
O.write((char*)&Table[0], Table.size());
O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
}

View File

@ -24,6 +24,7 @@
#include <map>
namespace llvm {
class BinaryObject;
class ConstantStruct;
class ELFCodeEmitter;
class GlobalVariable;
@ -56,6 +57,9 @@ namespace llvm {
/// Target machine description.
TargetMachine &TM;
/// Target Elf Writer description.
const TargetELFWriterInfo *TEW;
/// Mang - The object used to perform name mangling for this module.
Mangler *Mang;
@ -85,13 +89,8 @@ namespace llvm {
bool doFinalization(Module &M);
private:
// The buffer we accumulate the file header into. Note that this should be
// changed into something much more efficient later (and the bitcode writer
// as well!).
DataBuffer FileHeader;
/// ElfHdr - Hold information about the ELF Header
ELFHeader *ElfHdr;
// Blob containing the Elf header
BinaryObject ElfHdr;
/// SectionList - This is the list of sections that we have emitted to the
/// file. Once the file has been completely built, the section header table
@ -110,7 +109,7 @@ namespace llvm {
ELFSection *&SN = SectionLookup[Name];
if (SN) return *SN;
SectionList.push_back(Name);
SectionList.push_back(ELFSection(Name, isLittleEndian, is64Bit));
SN = &SectionList.back();
SN->SectionIdx = NumSections++;
SN->Type = Type;
@ -125,6 +124,10 @@ namespace llvm {
ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC);
}
ELFSection &getNonExecStackSection() {
return getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
}
ELFSection &getSymbolTableSection() {
return getSection(".symtab", ELFSection::SHT_SYMTAB, 0);
}
@ -143,14 +146,14 @@ namespace llvm {
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC);
}
/// SymbolTable - This is the list of symbols we have emitted to the file.
/// SymbolList - This is the list of symbols we have emitted to the file.
/// This actually gets rearranged before emission to the file (to put the
/// local symbols first in the list).
std::vector<ELFSym> SymbolTable;
std::vector<ELFSym> SymbolList;
/// PendingSyms - This is a list of externally defined symbols that we have
/// been asked to emit, but have not seen a reference to. When a reference
/// is seen, the symbol will move from this list to the SymbolTable.
/// PendingGlobals - List of externally defined symbols that we have been
/// asked to emit, but have not seen a reference to. When a reference
/// is seen, the symbol will move from this list to the SymbolList.
SetVector<GlobalValue*> PendingGlobals;
// As we complete the ELF file, we need to update fields in the ELF header
@ -160,15 +163,16 @@ namespace llvm {
unsigned ELFHdr_e_shoff_Offset; // e_shoff in ELF header.
unsigned ELFHdr_e_shstrndx_Offset; // e_shstrndx in ELF header.
unsigned ELFHdr_e_shnum_Offset; // e_shnum in ELF header.
private:
void EmitGlobal(GlobalVariable *GV);
void EmitGlobalConstant(const Constant *C, OutputBuffer &GblCstTab);
void EmitGlobalConstant(const Constant *C, ELFSection &GblS);
void EmitGlobalConstantStruct(const ConstantStruct *CVS,
OutputBuffer &GblCstTab);
ELFSection &GblS);
void EmitRelocations();
void EmitSectionHeader(OutputBuffer &TableOut, const ELFSection &Section);
void EmitSectionHeader(BinaryObject &SHdrTab, const ELFSection &SHdr);
void EmitSectionTableStringTable();
void EmitSymbol(OutputBuffer &SymTabOut, ELFSym &Sym);
void EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym);
void EmitSymbolTable();
void OutputSectionsAndSectionTable();
};

View File

@ -17,7 +17,10 @@
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
TargetELFWriterInfo::TargetELFWriterInfo(TargetMachine &tm) : TM(tm) {}
TargetELFWriterInfo::TargetELFWriterInfo(TargetMachine &tm) : TM(tm) {
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
isLittleEndian = TM.getTargetData()->isLittleEndian();
}
TargetELFWriterInfo::~TargetELFWriterInfo() {}