mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-04-05 01:31:05 +00:00
Introduce new BinaryObject (blob) class, ELF Writer modified to use it. BinaryObject.h by Aaron Gray
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@73333 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
956244b337
commit
ae9163f0e2
325
include/llvm/CodeGen/BinaryObject.h
Normal file
325
include/llvm/CodeGen/BinaryObject.h
Normal file
@ -0,0 +1,325 @@
|
||||
//===-- llvm/CodeGen/BinaryObject.h - Binary Object. -----------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// This file defines a Binary Object Aka. "blob" for holding data from code
|
||||
// generators, ready for data to the object module code writters.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_CODEGEN_BINARYOBJECT_H
|
||||
#define LLVM_CODEGEN_BINARYOBJECT_H
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace llvm {
|
||||
|
||||
class MachineRelocation;
|
||||
typedef std::vector<uint8_t> BinaryData;
|
||||
|
||||
class BinaryObject {
|
||||
protected:
|
||||
std::string Name;
|
||||
bool IsLittleEndian;
|
||||
bool Is64Bit;
|
||||
BinaryData Data;
|
||||
std::vector<MachineRelocation> Relocations;
|
||||
|
||||
public:
|
||||
/// Constructors and destructor
|
||||
BinaryObject() {}
|
||||
|
||||
BinaryObject(bool isLittleEndian, bool is64Bit)
|
||||
: IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
|
||||
|
||||
BinaryObject(const std::string &name, bool isLittleEndian, bool is64Bit)
|
||||
: Name(name), IsLittleEndian(isLittleEndian), Is64Bit(is64Bit) {}
|
||||
|
||||
~BinaryObject() {}
|
||||
|
||||
/// getName - get name of BinaryObject
|
||||
inline std::string getName() const { return Name; }
|
||||
|
||||
/// get size of binary data
|
||||
size_t size() const {
|
||||
return Data.size();
|
||||
}
|
||||
|
||||
/// get binary data
|
||||
BinaryData& getData() {
|
||||
return Data;
|
||||
}
|
||||
|
||||
/// get machine relocations
|
||||
const std::vector<MachineRelocation>& getRelocations() const {
|
||||
return Relocations;
|
||||
}
|
||||
|
||||
/// emitByte - This callback is invoked when a byte needs to be
|
||||
/// written to the data stream.
|
||||
inline void emitByte(uint8_t B) {
|
||||
Data.push_back(B);
|
||||
}
|
||||
|
||||
/// emitWord16 - This callback is invoked when a 16-bit word needs to be
|
||||
/// written to the data stream in correct endian format and correct size.
|
||||
inline void emitWord16(uint16_t W) {
|
||||
if (IsLittleEndian)
|
||||
emitWord16LE(W);
|
||||
else
|
||||
emitWord16BE(W);
|
||||
}
|
||||
|
||||
/// emitWord16LE - This callback is invoked when a 16-bit word needs to be
|
||||
/// written to the data stream in correct endian format and correct size.
|
||||
inline void emitWord16LE(uint16_t W) {
|
||||
Data.push_back((W >> 0) & 255);
|
||||
Data.push_back((W >> 8) & 255);
|
||||
}
|
||||
|
||||
/// emitWord16BE - This callback is invoked when a 16-bit word needs to be
|
||||
/// written to the data stream in correct endian format and correct size.
|
||||
inline void emitWord16BE(uint16_t W) {
|
||||
Data.push_back((W >> 8) & 255);
|
||||
Data.push_back((W >> 0) & 255);
|
||||
}
|
||||
|
||||
/// emitWord - This callback is invoked when a word needs to be
|
||||
/// written to the data stream in correct endian format and correct size.
|
||||
inline void emitWord(uint64_t W) {
|
||||
if (!Is64Bit)
|
||||
emitWord32(W);
|
||||
else
|
||||
emitWord64(W);
|
||||
}
|
||||
|
||||
/// emitWord32 - This callback is invoked when a 32-bit word needs to be
|
||||
/// written to the data stream in correct endian format.
|
||||
inline void emitWord32(uint32_t W) {
|
||||
if (IsLittleEndian)
|
||||
emitWordLE(W);
|
||||
else
|
||||
emitWordBE(W);
|
||||
}
|
||||
|
||||
/// emitWord64 - This callback is invoked when a 32-bit word needs to be
|
||||
/// written to the data stream in correct endian format.
|
||||
inline void emitWord64(uint64_t W) {
|
||||
if (IsLittleEndian)
|
||||
emitDWordLE(W);
|
||||
else
|
||||
emitDWordBE(W);
|
||||
}
|
||||
|
||||
/// emitWordLE - This callback is invoked when a 32-bit word needs to be
|
||||
/// written to the data stream in little-endian format.
|
||||
inline void emitWordLE(uint32_t W) {
|
||||
Data.push_back((W >> 0) & 255);
|
||||
Data.push_back((W >> 8) & 255);
|
||||
Data.push_back((W >> 16) & 255);
|
||||
Data.push_back((W >> 24) & 255);
|
||||
}
|
||||
|
||||
/// emitWordBE - This callback is invoked when a 32-bit word needs to be
|
||||
/// written to the data stream in big-endian format.
|
||||
///
|
||||
inline void emitWordBE(uint32_t W) {
|
||||
Data.push_back((W >> 24) & 255);
|
||||
Data.push_back((W >> 16) & 255);
|
||||
Data.push_back((W >> 8) & 255);
|
||||
Data.push_back((W >> 0) & 255);
|
||||
}
|
||||
|
||||
/// emitDWordLE - This callback is invoked when a 64-bit word needs to be
|
||||
/// written to the data stream in little-endian format.
|
||||
inline void emitDWordLE(uint64_t W) {
|
||||
Data.push_back(unsigned(W >> 0) & 255);
|
||||
Data.push_back(unsigned(W >> 8) & 255);
|
||||
Data.push_back(unsigned(W >> 16) & 255);
|
||||
Data.push_back(unsigned(W >> 24) & 255);
|
||||
Data.push_back(unsigned(W >> 32) & 255);
|
||||
Data.push_back(unsigned(W >> 40) & 255);
|
||||
Data.push_back(unsigned(W >> 48) & 255);
|
||||
Data.push_back(unsigned(W >> 56) & 255);
|
||||
}
|
||||
|
||||
/// emitDWordBE - This callback is invoked when a 64-bit word needs to be
|
||||
/// written to the data stream in big-endian format.
|
||||
inline void emitDWordBE(uint64_t W) {
|
||||
Data.push_back(unsigned(W >> 56) & 255);
|
||||
Data.push_back(unsigned(W >> 48) & 255);
|
||||
Data.push_back(unsigned(W >> 40) & 255);
|
||||
Data.push_back(unsigned(W >> 32) & 255);
|
||||
Data.push_back(unsigned(W >> 24) & 255);
|
||||
Data.push_back(unsigned(W >> 16) & 255);
|
||||
Data.push_back(unsigned(W >> 8) & 255);
|
||||
Data.push_back(unsigned(W >> 0) & 255);
|
||||
}
|
||||
|
||||
/// fixByte - This callback is invoked when a byte needs to be
|
||||
/// fixup the buffer.
|
||||
inline void fixByte(uint8_t B, uint32_t offset) {
|
||||
Data[offset] = B;
|
||||
}
|
||||
|
||||
/// fixWord16 - This callback is invoked when a 16-bit word needs to
|
||||
/// fixup the data stream in correct endian format.
|
||||
inline void fixWord16(uint16_t W, uint32_t offset) {
|
||||
if (IsLittleEndian)
|
||||
fixWord16LE(W, offset);
|
||||
else
|
||||
fixWord16BE(W, offset);
|
||||
}
|
||||
|
||||
/// emitWord16LE - This callback is invoked when a 16-bit word needs to
|
||||
/// fixup the data stream in little endian format.
|
||||
inline void fixWord16LE(uint16_t W, uint32_t offset) {
|
||||
Data[offset++] = W & 255;
|
||||
Data[offset] = (W >> 8) & 255;
|
||||
}
|
||||
|
||||
/// fixWord16BE - This callback is invoked when a 16-bit word needs to
|
||||
/// fixup data stream in big endian format.
|
||||
inline void fixWord16BE(uint16_t W, uint32_t offset) {
|
||||
Data[offset++] = (W >> 8) & 255;
|
||||
Data[offset] = W & 255;
|
||||
}
|
||||
|
||||
/// emitWord - This callback is invoked when a word needs to
|
||||
/// fixup the data in correct endian format and correct size.
|
||||
inline void fixWord(uint64_t W, uint32_t offset) {
|
||||
if (!Is64Bit)
|
||||
fixWord32(W, offset);
|
||||
else
|
||||
fixWord64(W, offset);
|
||||
}
|
||||
|
||||
/// fixWord32 - This callback is invoked when a 32-bit word needs to
|
||||
/// fixup the data in correct endian format.
|
||||
inline void fixWord32(uint32_t W, uint32_t offset) {
|
||||
if (IsLittleEndian)
|
||||
fixWord32LE(W, offset);
|
||||
else
|
||||
fixWord32BE(W, offset);
|
||||
}
|
||||
|
||||
/// fixWord32LE - This callback is invoked when a 32-bit word needs to
|
||||
/// fixup the data in little endian format.
|
||||
inline void fixWord32LE(uint32_t W, uint32_t offset) {
|
||||
Data[offset++] = W & 255;
|
||||
Data[offset++] = (W >> 8) & 255;
|
||||
Data[offset++] = (W >> 16) & 255;
|
||||
Data[offset] = (W >> 24) & 255;
|
||||
}
|
||||
|
||||
/// fixWord32BE - This callback is invoked when a 32-bit word needs to
|
||||
/// fixup the data in big endian format.
|
||||
inline void fixWord32BE(uint32_t W, uint32_t offset) {
|
||||
Data[offset++] = (W >> 24) & 255;
|
||||
Data[offset++] = (W >> 16) & 255;
|
||||
Data[offset++] = (W >> 8) & 255;
|
||||
Data[offset] = W & 255;
|
||||
}
|
||||
|
||||
/// fixWord64 - This callback is invoked when a 64-bit word needs to
|
||||
/// fixup the data in correct endian format.
|
||||
inline void fixWord64(uint64_t W, uint32_t offset) {
|
||||
if (IsLittleEndian)
|
||||
fixWord64LE(W, offset);
|
||||
else
|
||||
fixWord64BE(W, offset);
|
||||
}
|
||||
|
||||
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
|
||||
/// fixup the data in little endian format.
|
||||
inline void fixWord64LE(uint64_t W, uint32_t offset) {
|
||||
Data[offset++] = W & 255;
|
||||
Data[offset++] = (W >> 8) & 255;
|
||||
Data[offset++] = (W >> 16) & 255;
|
||||
Data[offset++] = (W >> 24) & 255;
|
||||
Data[offset++] = (W >> 32) & 255;
|
||||
Data[offset++] = (W >> 40) & 255;
|
||||
Data[offset++] = (W >> 48) & 255;
|
||||
Data[offset] = (W >> 56) & 255;
|
||||
}
|
||||
|
||||
/// fixWord64BE - This callback is invoked when a 64-bit word needs to
|
||||
/// fixup the data in big endian format.
|
||||
inline void fixWord64BE(uint64_t W, uint32_t offset) {
|
||||
Data[offset++] = (W >> 56) & 255;
|
||||
Data[offset++] = (W >> 48) & 255;
|
||||
Data[offset++] = (W >> 40) & 255;
|
||||
Data[offset++] = (W >> 32) & 255;
|
||||
Data[offset++] = (W >> 24) & 255;
|
||||
Data[offset++] = (W >> 16) & 255;
|
||||
Data[offset++] = (W >> 8) & 255;
|
||||
Data[offset] = W & 255;
|
||||
}
|
||||
|
||||
/// emitAlignment - Pad the data to the specified alignment.
|
||||
void emitAlignment(unsigned Alignment) {
|
||||
if (Alignment <= 1) return;
|
||||
unsigned PadSize = -Data.size() & (Alignment-1);
|
||||
for (unsigned i = 0; i<PadSize; ++i)
|
||||
Data.push_back(0);
|
||||
}
|
||||
|
||||
/// emitULEB128Bytes - This callback is invoked when a ULEB128 needs to be
|
||||
/// written to the data stream.
|
||||
void emitULEB128Bytes(uint64_t Value) {
|
||||
do {
|
||||
unsigned char Byte = Value & 0x7f;
|
||||
Value >>= 7;
|
||||
if (Value) Byte |= 0x80;
|
||||
emitByte(Byte);
|
||||
} while (Value);
|
||||
}
|
||||
|
||||
/// emitSLEB128Bytes - This callback is invoked when a SLEB128 needs to be
|
||||
/// written to the data stream.
|
||||
void emitSLEB128Bytes(int64_t Value) {
|
||||
int Sign = Value >> (8 * sizeof(Value) - 1);
|
||||
bool IsMore;
|
||||
|
||||
do {
|
||||
unsigned char Byte = Value & 0x7f;
|
||||
Value >>= 7;
|
||||
IsMore = Value != Sign || ((Byte ^ Sign) & 0x40) != 0;
|
||||
if (IsMore) Byte |= 0x80;
|
||||
emitByte(Byte);
|
||||
} while (IsMore);
|
||||
}
|
||||
|
||||
/// emitString - This callback is invoked when a String needs to be
|
||||
/// written to the data stream.
|
||||
void emitString(const std::string &String) {
|
||||
for (unsigned i = 0, N = static_cast<unsigned>(String.size()); i<N; ++i) {
|
||||
unsigned char C = String[i];
|
||||
emitByte(C);
|
||||
}
|
||||
emitByte(0);
|
||||
}
|
||||
|
||||
/// getCurrentPCOffset - Return the offset from the start of the emitted
|
||||
/// buffer that we are currently writing to.
|
||||
uintptr_t getCurrentPCOffset() const {
|
||||
return Data.size();
|
||||
}
|
||||
|
||||
/// addRelocation - Whenever a relocatable address is needed, it should be
|
||||
/// noted with this interface.
|
||||
void addRelocation(const MachineRelocation& relocation) {
|
||||
Relocations.push_back(relocation);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
||||
#endif
|
||||
|
@ -29,6 +29,7 @@ namespace llvm {
|
||||
// e_machine member of the ELF header.
|
||||
unsigned short EMachine;
|
||||
TargetMachine &TM;
|
||||
bool is64Bit, isLittleEndian;
|
||||
public:
|
||||
|
||||
// Machine architectures
|
||||
@ -49,10 +50,35 @@ namespace llvm {
|
||||
EM_X86_64 = 62 // AMD64
|
||||
};
|
||||
|
||||
// ELF File classes
|
||||
enum {
|
||||
ELFCLASS32 = 1, // 32-bit object file
|
||||
ELFCLASS64 = 2 // 64-bit object file
|
||||
};
|
||||
|
||||
// ELF Endianess
|
||||
enum {
|
||||
ELFDATA2LSB = 1, // Little-endian object file
|
||||
ELFDATA2MSB = 2 // Big-endian object file
|
||||
};
|
||||
|
||||
explicit TargetELFWriterInfo(TargetMachine &tm);
|
||||
virtual ~TargetELFWriterInfo();
|
||||
|
||||
unsigned short getEMachine() const { return EMachine; }
|
||||
unsigned getEFlags() const { return 0; }
|
||||
unsigned getEIClass() const { return is64Bit ? ELFCLASS64 : ELFCLASS32; }
|
||||
unsigned getEIData() const {
|
||||
return isLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
|
||||
}
|
||||
|
||||
/// ELF Header and ELF Section Header Info
|
||||
unsigned getHdrSize() const { return is64Bit ? 64 : 52; }
|
||||
unsigned getSHdrSize() const { return is64Bit ? 64 : 40; }
|
||||
|
||||
/// Symbol Table Info
|
||||
unsigned getSymTabEntrySize() const { return is64Bit ? 24 : 16; }
|
||||
unsigned getSymTabAlignment() const { return is64Bit ? 8 : 4; }
|
||||
|
||||
/// getFunctionAlignment - Returns the alignment for function 'F', targets
|
||||
/// with different alignment constraints should overload this method
|
||||
|
@ -10,11 +10,10 @@
|
||||
// This header contains common, non-processor-specific data structures and
|
||||
// constants for the ELF file format.
|
||||
//
|
||||
// The details of the ELF32 bits in this file are largely based on
|
||||
// the Tool Interface Standard (TIS) Executable and Linking Format
|
||||
// (ELF) Specification Version 1.2, May 1995. The ELF64 stuff is not
|
||||
// standardized, as far as I can tell. It was largely based on information
|
||||
// I found in OpenBSD header files.
|
||||
// The details of the ELF32 bits in this file are largely based on the Tool
|
||||
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
|
||||
// Version 1.2, May 1995. The ELF64 is based on HP/Intel definition of the
|
||||
// ELF-64 object file format document, Version 1.5 Draft 2 May 27, 1998
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
@ -22,11 +21,13 @@
|
||||
#define CODEGEN_ELF_H
|
||||
|
||||
#include "llvm/GlobalVariable.h"
|
||||
#include "llvm/CodeGen/BinaryObject.h"
|
||||
#include "llvm/CodeGen/MachineRelocation.h"
|
||||
#include "llvm/Support/DataTypes.h"
|
||||
#include <cstring>
|
||||
|
||||
namespace llvm {
|
||||
class BinaryObject;
|
||||
|
||||
// Identification Indexes
|
||||
enum {
|
||||
@ -47,62 +48,17 @@ namespace llvm {
|
||||
ET_HIPROC = 0xffff // Processor-specific
|
||||
};
|
||||
|
||||
// Object file classes.
|
||||
enum {
|
||||
ELFCLASS32 = 1, // 32-bit object file
|
||||
ELFCLASS64 = 2 // 64-bit object file
|
||||
};
|
||||
|
||||
// Object file byte orderings.
|
||||
enum {
|
||||
ELFDATA2LSB = 1, // Little-endian object file
|
||||
ELFDATA2MSB = 2 // Big-endian object file
|
||||
};
|
||||
|
||||
// Versioning
|
||||
enum {
|
||||
EV_NONE = 0,
|
||||
EV_CURRENT = 1
|
||||
};
|
||||
|
||||
struct ELFHeader {
|
||||
// e_machine - This field is the target specific value to emit as the
|
||||
// e_machine member of the ELF header.
|
||||
unsigned short e_machine;
|
||||
|
||||
// e_flags - The machine flags for the target. This defaults to zero.
|
||||
unsigned e_flags;
|
||||
|
||||
// e_size - Holds the ELF header's size in bytes
|
||||
unsigned e_ehsize;
|
||||
|
||||
// Endianess and ELF Class (64 or 32 bits)
|
||||
unsigned ByteOrder;
|
||||
unsigned ElfClass;
|
||||
|
||||
unsigned getByteOrder() const { return ByteOrder; }
|
||||
unsigned getElfClass() const { return ElfClass; }
|
||||
unsigned getSize() const { return e_ehsize; }
|
||||
unsigned getMachine() const { return e_machine; }
|
||||
unsigned getFlags() const { return e_flags; }
|
||||
|
||||
ELFHeader(unsigned short machine, unsigned flags,
|
||||
bool is64Bit, bool isLittleEndian)
|
||||
: e_machine(machine), e_flags(flags) {
|
||||
ElfClass = is64Bit ? ELFCLASS64 : ELFCLASS32;
|
||||
ByteOrder = isLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
|
||||
e_ehsize = is64Bit ? 64 : 52;
|
||||
}
|
||||
};
|
||||
|
||||
/// ELFSection - This struct contains information about each section that is
|
||||
/// emitted to the file. This is eventually turned into the section header
|
||||
/// table at the end of the file.
|
||||
struct ELFSection {
|
||||
|
||||
// Name of the section
|
||||
std::string Name;
|
||||
|
||||
class ELFSection : public BinaryObject {
|
||||
public:
|
||||
// ELF specific fields
|
||||
unsigned NameIdx; // sh_name - .shstrtab idx of name, once emitted.
|
||||
unsigned Type; // sh_type - Section contents & semantics
|
||||
@ -143,8 +99,8 @@ namespace llvm {
|
||||
SHT_REL = 9, // Relocation entries; no explicit addends.
|
||||
SHT_SHLIB = 10, // Reserved.
|
||||
SHT_DYNSYM = 11, // Symbol table.
|
||||
SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type.
|
||||
SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type.
|
||||
SHT_LOPROC = 0x70000000, // Lowest processor arch-specific type.
|
||||
SHT_HIPROC = 0x7fffffff, // Highest processor arch-specific type.
|
||||
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
|
||||
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
|
||||
};
|
||||
@ -163,22 +119,9 @@ namespace llvm {
|
||||
/// SectionIdx - The number of the section in the Section Table.
|
||||
unsigned short SectionIdx;
|
||||
|
||||
/// SectionData - The actual data for this section which we are building
|
||||
/// up for emission to the file.
|
||||
std::vector<unsigned char> SectionData;
|
||||
|
||||
/// Relocations - The relocations that we have encountered so far in this
|
||||
/// section that we will need to convert to Elf relocation entries when
|
||||
/// the file is written.
|
||||
std::vector<MachineRelocation> Relocations;
|
||||
|
||||
/// Section Header Size
|
||||
static unsigned getSectionHdrSize(bool is64Bit)
|
||||
{ return is64Bit ? 64 : 40; }
|
||||
|
||||
ELFSection(const std::string &name)
|
||||
: Name(name), Type(0), Flags(0), Addr(0), Offset(0), Size(0),
|
||||
Link(0), Info(0), Align(0), EntSize(0) {}
|
||||
ELFSection(const std::string &name, bool isLittleEndian, bool is64Bit)
|
||||
: BinaryObject(name, isLittleEndian, is64Bit), Type(0), Flags(0), Addr(0),
|
||||
Offset(0), Size(0), Link(0), Info(0), Align(0), EntSize(0) {}
|
||||
};
|
||||
|
||||
/// ELFSym - This struct contains information about each symbol that is
|
||||
@ -245,9 +188,6 @@ namespace llvm {
|
||||
assert(X == (X & 0xF) && "Type value out of range!");
|
||||
Info = (Info & 0xF0) | X;
|
||||
}
|
||||
|
||||
static unsigned getEntrySize(bool is64Bit)
|
||||
{ return is64Bit ? 24 : 16; }
|
||||
};
|
||||
|
||||
} // end namespace llvm
|
||||
|
@ -13,6 +13,7 @@
|
||||
#include "llvm/Constants.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/Function.h"
|
||||
#include "llvm/CodeGen/BinaryObject.h"
|
||||
#include "llvm/CodeGen/MachineConstantPool.h"
|
||||
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
@ -33,9 +34,10 @@ void ELFCodeEmitter::startFunction(MachineFunction &MF) {
|
||||
DOUT << "processing function: " << MF.getFunction()->getName() << "\n";
|
||||
|
||||
// FIXME: better memory management, this will be replaced by BinaryObjects
|
||||
ES->SectionData.reserve(4096);
|
||||
BufferBegin = &ES->SectionData[0];
|
||||
BufferEnd = BufferBegin + ES->SectionData.capacity();
|
||||
BinaryData &BD = ES->getData();
|
||||
BD.reserve(4096);
|
||||
BufferBegin = &BD[0];
|
||||
BufferEnd = BufferBegin + BD.capacity();
|
||||
|
||||
// Align the output buffer with function alignment, and
|
||||
// upgrade the section alignment if required
|
||||
@ -100,7 +102,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
|
||||
FnSym.Value = FnStartPtr-BufferBegin;
|
||||
|
||||
// Finally, add it to the symtab.
|
||||
EW.SymbolTable.push_back(FnSym);
|
||||
EW.SymbolList.push_back(FnSym);
|
||||
|
||||
// Relocations
|
||||
// -----------
|
||||
@ -121,7 +123,7 @@ bool ELFCodeEmitter::finishFunction(MachineFunction &MF) {
|
||||
} else {
|
||||
assert(0 && "Unhandled relocation type");
|
||||
}
|
||||
ES->Relocations.push_back(MR);
|
||||
ES->addRelocation(MR);
|
||||
}
|
||||
Relocations.clear();
|
||||
|
||||
|
@ -37,6 +37,7 @@
|
||||
#include "llvm/Module.h"
|
||||
#include "llvm/PassManager.h"
|
||||
#include "llvm/DerivedTypes.h"
|
||||
#include "llvm/CodeGen/BinaryObject.h"
|
||||
#include "llvm/CodeGen/FileWriters.h"
|
||||
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
||||
#include "llvm/CodeGen/MachineConstantPool.h"
|
||||
@ -66,22 +67,23 @@ MachineCodeEmitter *llvm::AddELFWriter(PassManagerBase &PM,
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
ELFWriter::ELFWriter(raw_ostream &o, TargetMachine &tm)
|
||||
: MachineFunctionPass(&ID), O(o), TM(tm), ElfHdr() {
|
||||
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
|
||||
isLittleEndian = TM.getTargetData()->isLittleEndian();
|
||||
: MachineFunctionPass(&ID), O(o), TM(tm),
|
||||
is64Bit(TM.getTargetData()->getPointerSizeInBits() == 64),
|
||||
isLittleEndian(TM.getTargetData()->isLittleEndian()),
|
||||
ElfHdr(isLittleEndian, is64Bit) {
|
||||
|
||||
ElfHdr = new ELFHeader(TM.getELFWriterInfo()->getEMachine(), 0,
|
||||
is64Bit, isLittleEndian);
|
||||
TAI = TM.getTargetAsmInfo();
|
||||
TEW = TM.getELFWriterInfo();
|
||||
|
||||
// Create the machine code emitter object for this target.
|
||||
MCE = new ELFCodeEmitter(*this);
|
||||
|
||||
// Inital number of sections
|
||||
NumSections = 0;
|
||||
}
|
||||
|
||||
ELFWriter::~ELFWriter() {
|
||||
delete MCE;
|
||||
delete ElfHdr;
|
||||
}
|
||||
|
||||
// doInitialization - Emit the file header and all of the global variables for
|
||||
@ -89,10 +91,6 @@ ELFWriter::~ELFWriter() {
|
||||
bool ELFWriter::doInitialization(Module &M) {
|
||||
Mang = new Mangler(M);
|
||||
|
||||
// Local alias to shortenify coming code.
|
||||
std::vector<unsigned char> &FH = FileHeader;
|
||||
OutputBuffer FHOut(FH, is64Bit, isLittleEndian);
|
||||
|
||||
// ELF Header
|
||||
// ----------
|
||||
// Fields e_shnum e_shstrndx are only known after all section have
|
||||
@ -101,49 +99,48 @@ bool ELFWriter::doInitialization(Module &M) {
|
||||
//
|
||||
// Note
|
||||
// ----
|
||||
// FHOut.outaddr method behaves differently for ELF32 and ELF64 writing
|
||||
// emitWord method behaves differently for ELF32 and ELF64, writing
|
||||
// 4 bytes in the former and 8 in the last for *_off and *_addr elf types
|
||||
|
||||
FHOut.outbyte(0x7f); // e_ident[EI_MAG0]
|
||||
FHOut.outbyte('E'); // e_ident[EI_MAG1]
|
||||
FHOut.outbyte('L'); // e_ident[EI_MAG2]
|
||||
FHOut.outbyte('F'); // e_ident[EI_MAG3]
|
||||
ElfHdr.emitByte(0x7f); // e_ident[EI_MAG0]
|
||||
ElfHdr.emitByte('E'); // e_ident[EI_MAG1]
|
||||
ElfHdr.emitByte('L'); // e_ident[EI_MAG2]
|
||||
ElfHdr.emitByte('F'); // e_ident[EI_MAG3]
|
||||
|
||||
FHOut.outbyte(ElfHdr->getElfClass()); // e_ident[EI_CLASS]
|
||||
FHOut.outbyte(ElfHdr->getByteOrder()); // e_ident[EI_DATA]
|
||||
FHOut.outbyte(EV_CURRENT); // e_ident[EI_VERSION]
|
||||
ElfHdr.emitByte(TEW->getEIClass()); // e_ident[EI_CLASS]
|
||||
ElfHdr.emitByte(TEW->getEIData()); // e_ident[EI_DATA]
|
||||
ElfHdr.emitByte(EV_CURRENT); // e_ident[EI_VERSION]
|
||||
ElfHdr.emitAlignment(16); // e_ident[EI_NIDENT-EI_PAD]
|
||||
|
||||
FH.resize(16); // e_ident[EI_NIDENT-EI_PAD]
|
||||
|
||||
FHOut.outhalf(ET_REL); // e_type
|
||||
FHOut.outhalf(ElfHdr->getMachine()); // e_machine = target
|
||||
FHOut.outword(EV_CURRENT); // e_version
|
||||
FHOut.outaddr(0); // e_entry = 0, no entry point in .o file
|
||||
FHOut.outaddr(0); // e_phoff = 0, no program header for .o
|
||||
ELFHdr_e_shoff_Offset = FH.size();
|
||||
FHOut.outaddr(0); // e_shoff = sec hdr table off in bytes
|
||||
FHOut.outword(ElfHdr->getFlags()); // e_flags = whatever the target wants
|
||||
FHOut.outhalf(ElfHdr->getSize()); // e_ehsize = ELF header size
|
||||
FHOut.outhalf(0); // e_phentsize = prog header entry size
|
||||
FHOut.outhalf(0); // e_phnum = # prog header entries = 0
|
||||
ElfHdr.emitWord16(ET_REL); // e_type
|
||||
ElfHdr.emitWord16(TEW->getEMachine()); // e_machine = target
|
||||
ElfHdr.emitWord32(EV_CURRENT); // e_version
|
||||
ElfHdr.emitWord(0); // e_entry, no entry point in .o file
|
||||
ElfHdr.emitWord(0); // e_phoff, no program header for .o
|
||||
ELFHdr_e_shoff_Offset = ElfHdr.size();
|
||||
ElfHdr.emitWord(0); // e_shoff = sec hdr table off in bytes
|
||||
ElfHdr.emitWord32(TEW->getEFlags()); // e_flags = whatever the target wants
|
||||
ElfHdr.emitWord16(TEW->getHdrSize()); // e_ehsize = ELF header size
|
||||
ElfHdr.emitWord16(0); // e_phentsize = prog header entry size
|
||||
ElfHdr.emitWord16(0); // e_phnum = # prog header entries = 0
|
||||
|
||||
// e_shentsize = Section header entry size
|
||||
FHOut.outhalf(ELFSection::getSectionHdrSize(is64Bit));
|
||||
ElfHdr.emitWord16(TEW->getSHdrSize());
|
||||
|
||||
// e_shnum = # of section header ents
|
||||
ELFHdr_e_shnum_Offset = FH.size();
|
||||
FHOut.outhalf(0);
|
||||
ELFHdr_e_shnum_Offset = ElfHdr.size();
|
||||
ElfHdr.emitWord16(0); // Placeholder
|
||||
|
||||
// e_shstrndx = Section # of '.shstrtab'
|
||||
ELFHdr_e_shstrndx_Offset = FH.size();
|
||||
FHOut.outhalf(0);
|
||||
ELFHdr_e_shstrndx_Offset = ElfHdr.size();
|
||||
ElfHdr.emitWord16(0); // Placeholder
|
||||
|
||||
// Add the null section, which is required to be first in the file.
|
||||
getSection("", ELFSection::SHT_NULL, 0);
|
||||
|
||||
// Start up the symbol table. The first entry in the symtab is the null
|
||||
// Start up the symbol table. The first entry in the symtab is the null
|
||||
// entry.
|
||||
SymbolTable.push_back(ELFSym(0));
|
||||
SymbolList.push_back(ELFSym(0));
|
||||
|
||||
return false;
|
||||
}
|
||||
@ -162,7 +159,7 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
|
||||
ExternalSym.SetBind(ELFSym::STB_GLOBAL);
|
||||
ExternalSym.SetType(ELFSym::STT_NOTYPE);
|
||||
ExternalSym.SectionIdx = ELFSection::SHN_UNDEF;
|
||||
SymbolTable.push_back(ExternalSym);
|
||||
SymbolList.push_back(ExternalSym);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -185,7 +182,7 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
|
||||
CommonSym.SetBind(ELFSym::STB_GLOBAL);
|
||||
CommonSym.SetType(ELFSym::STT_OBJECT);
|
||||
CommonSym.SectionIdx = ELFSection::SHN_COMMON;
|
||||
SymbolTable.push_back(CommonSym);
|
||||
SymbolList.push_back(CommonSym);
|
||||
getSection(S->getName(), ELFSection::SHT_NOBITS,
|
||||
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC, 1);
|
||||
return;
|
||||
@ -222,7 +219,7 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
|
||||
// Set the idx of the .bss section
|
||||
BSSSym.SectionIdx = BSSSection.SectionIdx;
|
||||
if (!GV->hasPrivateLinkage())
|
||||
SymbolTable.push_back(BSSSym);
|
||||
SymbolList.push_back(BSSSym);
|
||||
|
||||
// Reserve space in the .bss section for this symbol.
|
||||
BSSSection.Size += Size;
|
||||
@ -262,21 +259,18 @@ void ELFWriter::EmitGlobal(GlobalVariable *GV) {
|
||||
if (Align > ElfS.Align)
|
||||
ElfS.Align = Align;
|
||||
|
||||
DataBuffer &GblCstBuf = ElfS.SectionData;
|
||||
OutputBuffer GblCstTab(GblCstBuf, is64Bit, isLittleEndian);
|
||||
|
||||
// S.Value should contain the symbol index inside the section,
|
||||
// and all symbols should start on their required alignment boundary
|
||||
GblSym.Value = (GblCstBuf.size() + (Align-1)) & (-Align);
|
||||
GblCstBuf.insert(GblCstBuf.end(), GblSym.Value-GblCstBuf.size(), 0);
|
||||
GblSym.Value = (ElfS.size() + (Align-1)) & (-Align);
|
||||
ElfS.emitAlignment(Align);
|
||||
|
||||
// Emit the constant symbol to its section
|
||||
EmitGlobalConstant(CV, GblCstTab);
|
||||
SymbolTable.push_back(GblSym);
|
||||
EmitGlobalConstant(CV, ElfS);
|
||||
SymbolList.push_back(GblSym);
|
||||
}
|
||||
|
||||
void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
|
||||
OutputBuffer &GblCstTab) {
|
||||
ELFSection &GblS) {
|
||||
|
||||
// Print the fields in successive locations. Pad to align if needed!
|
||||
const TargetData *TD = TM.getTargetData();
|
||||
@ -293,40 +287,40 @@ void ELFWriter::EmitGlobalConstantStruct(const ConstantStruct *CVS,
|
||||
sizeSoFar += fieldSize + padSize;
|
||||
|
||||
// Now print the actual field value.
|
||||
EmitGlobalConstant(field, GblCstTab);
|
||||
EmitGlobalConstant(field, GblS);
|
||||
|
||||
// Insert padding - this may include padding to increase the size of the
|
||||
// current field up to the ABI size (if the struct is not packed) as well
|
||||
// as padding to ensure that the next field starts at the right offset.
|
||||
for (unsigned p=0; p < padSize; p++)
|
||||
GblCstTab.outbyte(0);
|
||||
GblS.emitByte(0);
|
||||
}
|
||||
assert(sizeSoFar == cvsLayout->getSizeInBytes() &&
|
||||
"Layout of constant struct may be incorrect!");
|
||||
}
|
||||
|
||||
void ELFWriter::EmitGlobalConstant(const Constant *CV, OutputBuffer &GblCstTab) {
|
||||
void ELFWriter::EmitGlobalConstant(const Constant *CV, ELFSection &GblS) {
|
||||
const TargetData *TD = TM.getTargetData();
|
||||
unsigned Size = TD->getTypeAllocSize(CV->getType());
|
||||
|
||||
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
|
||||
if (CVA->isString()) {
|
||||
std::string GblStr = CVA->getAsString();
|
||||
GblCstTab.outstring(GblStr, GblStr.length());
|
||||
GblS.emitString(GblStr);
|
||||
} else { // Not a string. Print the values in successive locations
|
||||
for (unsigned i = 0, e = CVA->getNumOperands(); i != e; ++i)
|
||||
EmitGlobalConstant(CVA->getOperand(i), GblCstTab);
|
||||
EmitGlobalConstant(CVA->getOperand(i), GblS);
|
||||
}
|
||||
return;
|
||||
} else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
|
||||
EmitGlobalConstantStruct(CVS, GblCstTab);
|
||||
EmitGlobalConstantStruct(CVS, GblS);
|
||||
return;
|
||||
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
||||
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
|
||||
if (CFP->getType() == Type::DoubleTy)
|
||||
GblCstTab.outxword(Val);
|
||||
GblS.emitWord64(Val);
|
||||
else if (CFP->getType() == Type::FloatTy)
|
||||
GblCstTab.outword(Val);
|
||||
GblS.emitWord32(Val);
|
||||
else if (CFP->getType() == Type::X86_FP80Ty) {
|
||||
assert(0 && "X86_FP80Ty global emission not implemented");
|
||||
} else if (CFP->getType() == Type::PPC_FP128Ty)
|
||||
@ -334,16 +328,16 @@ void ELFWriter::EmitGlobalConstant(const Constant *CV, OutputBuffer &GblCstTab)
|
||||
return;
|
||||
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
||||
if (Size == 4)
|
||||
GblCstTab.outword(CI->getZExtValue());
|
||||
GblS.emitWord32(CI->getZExtValue());
|
||||
else if (Size == 8)
|
||||
GblCstTab.outxword(CI->getZExtValue());
|
||||
GblS.emitWord64(CI->getZExtValue());
|
||||
else
|
||||
assert(0 && "LargeInt global emission not implemented");
|
||||
return;
|
||||
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(CV)) {
|
||||
const VectorType *PTy = CP->getType();
|
||||
for (unsigned I = 0, E = PTy->getNumElements(); I < E; ++I)
|
||||
EmitGlobalConstant(CP->getOperand(I), GblCstTab);
|
||||
EmitGlobalConstant(CP->getOperand(I), GblS);
|
||||
return;
|
||||
}
|
||||
assert(0 && "unknown global constant");
|
||||
@ -358,26 +352,30 @@ bool ELFWriter::runOnMachineFunction(MachineFunction &MF) {
|
||||
/// doFinalization - Now that the module has been completely processed, emit
|
||||
/// the ELF file to 'O'.
|
||||
bool ELFWriter::doFinalization(Module &M) {
|
||||
/// FIXME: This should be removed when moving to BinaryObjects. Since the
|
||||
/// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.SectionData
|
||||
/// FIXME: This should be removed when moving to ObjectCodeEmiter. Since the
|
||||
/// current ELFCodeEmiter uses CurrBuff, ... it doesn't update S.Data
|
||||
/// vector size for .text sections, so this is a quick dirty fix
|
||||
ELFSection &TS = getTextSection();
|
||||
if (TS.Size)
|
||||
if (TS.Size) {
|
||||
BinaryData &BD = TS.getData();
|
||||
for (unsigned e=0; e<TS.Size; ++e)
|
||||
TS.SectionData.push_back(TS.SectionData[e]);
|
||||
BD.push_back(BD[e]);
|
||||
}
|
||||
|
||||
// Get .data and .bss section, they should always be present in the binary
|
||||
// Emit .data section placeholder
|
||||
getDataSection();
|
||||
|
||||
// Emit .bss section placeholder
|
||||
getBSSSection();
|
||||
|
||||
// build data, bss and "common" sections.
|
||||
// Build and emit data, bss and "common" sections.
|
||||
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
||||
I != E; ++I)
|
||||
EmitGlobal(I);
|
||||
|
||||
// Emit non-executable stack note
|
||||
if (TAI->getNonexecutableStackDirective())
|
||||
getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
|
||||
getNonExecStackSection();
|
||||
|
||||
// Emit the symbol table now, if non-empty.
|
||||
EmitSymbolTable();
|
||||
@ -385,10 +383,10 @@ bool ELFWriter::doFinalization(Module &M) {
|
||||
// Emit the relocation sections.
|
||||
EmitRelocations();
|
||||
|
||||
// Emit the string table for the sections in the ELF file.
|
||||
// Emit the sections string table.
|
||||
EmitSectionTableStringTable();
|
||||
|
||||
// Emit the sections to the .o file, and emit the section table for the file.
|
||||
// Dump the sections and section table to the .o file.
|
||||
OutputSectionsAndSectionTable();
|
||||
|
||||
// We are done with the abstract symbols.
|
||||
@ -404,106 +402,97 @@ bool ELFWriter::doFinalization(Module &M) {
|
||||
void ELFWriter::EmitRelocations() {
|
||||
}
|
||||
|
||||
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymTabOut'
|
||||
void ELFWriter::EmitSymbol(OutputBuffer &SymTabOut, ELFSym &Sym) {
|
||||
/// EmitSymbol - Write symbol 'Sym' to the symbol table 'SymbolTable'
|
||||
void ELFWriter::EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym) {
|
||||
if (is64Bit) {
|
||||
SymTabOut.outword(Sym.NameIdx);
|
||||
SymTabOut.outbyte(Sym.Info);
|
||||
SymTabOut.outbyte(Sym.Other);
|
||||
SymTabOut.outhalf(Sym.SectionIdx);
|
||||
SymTabOut.outaddr64(Sym.Value);
|
||||
SymTabOut.outxword(Sym.Size);
|
||||
SymbolTable.emitWord32(Sym.NameIdx);
|
||||
SymbolTable.emitByte(Sym.Info);
|
||||
SymbolTable.emitByte(Sym.Other);
|
||||
SymbolTable.emitWord16(Sym.SectionIdx);
|
||||
SymbolTable.emitWord64(Sym.Value);
|
||||
SymbolTable.emitWord64(Sym.Size);
|
||||
} else {
|
||||
SymTabOut.outword(Sym.NameIdx);
|
||||
SymTabOut.outaddr32(Sym.Value);
|
||||
SymTabOut.outword(Sym.Size);
|
||||
SymTabOut.outbyte(Sym.Info);
|
||||
SymTabOut.outbyte(Sym.Other);
|
||||
SymTabOut.outhalf(Sym.SectionIdx);
|
||||
SymbolTable.emitWord32(Sym.NameIdx);
|
||||
SymbolTable.emitWord32(Sym.Value);
|
||||
SymbolTable.emitWord32(Sym.Size);
|
||||
SymbolTable.emitByte(Sym.Info);
|
||||
SymbolTable.emitByte(Sym.Other);
|
||||
SymbolTable.emitWord16(Sym.SectionIdx);
|
||||
}
|
||||
}
|
||||
|
||||
/// EmitSectionHeader - Write section 'Section' header in 'TableOut'
|
||||
/// EmitSectionHeader - Write section 'Section' header in 'SHdrTab'
|
||||
/// Section Header Table
|
||||
void ELFWriter::EmitSectionHeader(OutputBuffer &TableOut, const ELFSection &S) {
|
||||
TableOut.outword(S.NameIdx);
|
||||
TableOut.outword(S.Type);
|
||||
void ELFWriter::EmitSectionHeader(BinaryObject &SHdrTab,
|
||||
const ELFSection &SHdr) {
|
||||
SHdrTab.emitWord32(SHdr.NameIdx);
|
||||
SHdrTab.emitWord32(SHdr.Type);
|
||||
if (is64Bit) {
|
||||
TableOut.outxword(S.Flags);
|
||||
TableOut.outaddr(S.Addr);
|
||||
TableOut.outaddr(S.Offset);
|
||||
TableOut.outxword(S.Size);
|
||||
TableOut.outword(S.Link);
|
||||
TableOut.outword(S.Info);
|
||||
TableOut.outxword(S.Align);
|
||||
TableOut.outxword(S.EntSize);
|
||||
SHdrTab.emitWord64(SHdr.Flags);
|
||||
SHdrTab.emitWord(SHdr.Addr);
|
||||
SHdrTab.emitWord(SHdr.Offset);
|
||||
SHdrTab.emitWord64(SHdr.Size);
|
||||
SHdrTab.emitWord32(SHdr.Link);
|
||||
SHdrTab.emitWord32(SHdr.Info);
|
||||
SHdrTab.emitWord64(SHdr.Align);
|
||||
SHdrTab.emitWord64(SHdr.EntSize);
|
||||
} else {
|
||||
TableOut.outword(S.Flags);
|
||||
TableOut.outaddr(S.Addr);
|
||||
TableOut.outaddr(S.Offset);
|
||||
TableOut.outword(S.Size);
|
||||
TableOut.outword(S.Link);
|
||||
TableOut.outword(S.Info);
|
||||
TableOut.outword(S.Align);
|
||||
TableOut.outword(S.EntSize);
|
||||
SHdrTab.emitWord32(SHdr.Flags);
|
||||
SHdrTab.emitWord(SHdr.Addr);
|
||||
SHdrTab.emitWord(SHdr.Offset);
|
||||
SHdrTab.emitWord32(SHdr.Size);
|
||||
SHdrTab.emitWord32(SHdr.Link);
|
||||
SHdrTab.emitWord32(SHdr.Info);
|
||||
SHdrTab.emitWord32(SHdr.Align);
|
||||
SHdrTab.emitWord32(SHdr.EntSize);
|
||||
}
|
||||
}
|
||||
|
||||
/// EmitSymbolTable - If the current symbol table is non-empty, emit the string
|
||||
/// table for it and then the symbol table itself.
|
||||
void ELFWriter::EmitSymbolTable() {
|
||||
if (SymbolTable.size() == 1) return; // Only the null entry.
|
||||
if (SymbolList.size() == 1) return; // Only the null entry.
|
||||
|
||||
// FIXME: compact all local symbols to the start of the symtab.
|
||||
unsigned FirstNonLocalSymbol = 1;
|
||||
|
||||
ELFSection &StrTab = getStringTableSection();
|
||||
DataBuffer &StrTabBuf = StrTab.SectionData;
|
||||
OutputBuffer StrTabOut(StrTabBuf, is64Bit, isLittleEndian);
|
||||
|
||||
// Set the zero'th symbol to a null byte, as required.
|
||||
StrTabOut.outbyte(0);
|
||||
StrTab.emitByte(0);
|
||||
|
||||
unsigned Index = 1;
|
||||
for (unsigned i = 1, e = SymbolTable.size(); i != e; ++i) {
|
||||
for (unsigned i = 1, e = SymbolList.size(); i != e; ++i) {
|
||||
// Use the name mangler to uniquify the LLVM symbol.
|
||||
std::string Name = Mang->getValueName(SymbolTable[i].GV);
|
||||
std::string Name = Mang->getValueName(SymbolList[i].GV);
|
||||
|
||||
if (Name.empty()) {
|
||||
SymbolTable[i].NameIdx = 0;
|
||||
SymbolList[i].NameIdx = 0;
|
||||
} else {
|
||||
SymbolTable[i].NameIdx = Index;
|
||||
|
||||
// Add the name to the output buffer, including the null terminator.
|
||||
StrTabBuf.insert(StrTabBuf.end(), Name.begin(), Name.end());
|
||||
|
||||
// Add a null terminator.
|
||||
StrTabBuf.push_back(0);
|
||||
SymbolList[i].NameIdx = Index;
|
||||
StrTab.emitString(Name);
|
||||
|
||||
// Keep track of the number of bytes emitted to this section.
|
||||
Index += Name.size()+1;
|
||||
}
|
||||
}
|
||||
assert(Index == StrTabBuf.size());
|
||||
assert(Index == StrTab.size());
|
||||
StrTab.Size = Index;
|
||||
|
||||
// Now that we have emitted the string table and know the offset into the
|
||||
// string table of each symbol, emit the symbol table itself.
|
||||
ELFSection &SymTab = getSymbolTableSection();
|
||||
SymTab.Align = is64Bit ? 8 : 4;
|
||||
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
|
||||
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
|
||||
SymTab.Align = TEW->getSymTabAlignment();
|
||||
SymTab.Link = StrTab.SectionIdx; // Section Index of .strtab.
|
||||
SymTab.Info = FirstNonLocalSymbol; // First non-STB_LOCAL symbol.
|
||||
|
||||
// Size of each symtab entry.
|
||||
SymTab.EntSize = ELFSym::getEntrySize(is64Bit);
|
||||
SymTab.EntSize = TEW->getSymTabEntrySize();
|
||||
|
||||
DataBuffer &SymTabBuf = SymTab.SectionData;
|
||||
OutputBuffer SymTabOut(SymTabBuf, is64Bit, isLittleEndian);
|
||||
for (unsigned i = 0, e = SymbolList.size(); i != e; ++i)
|
||||
EmitSymbol(SymTab, SymbolList[i]);
|
||||
|
||||
for (unsigned i = 0, e = SymbolTable.size(); i != e; ++i)
|
||||
EmitSymbol(SymTabOut, SymbolTable[i]);
|
||||
|
||||
SymTab.Size = SymTabBuf.size();
|
||||
SymTab.Size = SymTab.size();
|
||||
}
|
||||
|
||||
/// EmitSectionTableStringTable - This method adds and emits a section for the
|
||||
@ -515,32 +504,25 @@ void ELFWriter::EmitSectionTableStringTable() {
|
||||
|
||||
// Now that we know which section number is the .shstrtab section, update the
|
||||
// e_shstrndx entry in the ELF header.
|
||||
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
|
||||
FHOut.fixhalf(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
|
||||
ElfHdr.fixWord16(SHStrTab.SectionIdx, ELFHdr_e_shstrndx_Offset);
|
||||
|
||||
// Set the NameIdx of each section in the string table and emit the bytes for
|
||||
// the string table.
|
||||
unsigned Index = 0;
|
||||
DataBuffer &Buf = SHStrTab.SectionData;
|
||||
|
||||
for (std::list<ELFSection>::iterator I = SectionList.begin(),
|
||||
E = SectionList.end(); I != E; ++I) {
|
||||
// Set the index into the table. Note if we have lots of entries with
|
||||
// common suffixes, we could memoize them here if we cared.
|
||||
I->NameIdx = Index;
|
||||
|
||||
// Add the name to the output buffer, including the null terminator.
|
||||
Buf.insert(Buf.end(), I->Name.begin(), I->Name.end());
|
||||
|
||||
// Add a null terminator.
|
||||
Buf.push_back(0);
|
||||
SHStrTab.emitString(I->getName());
|
||||
|
||||
// Keep track of the number of bytes emitted to this section.
|
||||
Index += I->Name.size()+1;
|
||||
Index += I->getName().size()+1;
|
||||
}
|
||||
|
||||
// Set the size of .shstrtab now that we know what it is.
|
||||
assert(Index == Buf.size());
|
||||
assert(Index == SHStrTab.size());
|
||||
SHStrTab.Size = Index;
|
||||
}
|
||||
|
||||
@ -549,7 +531,7 @@ void ELFWriter::EmitSectionTableStringTable() {
|
||||
/// SectionTable.
|
||||
void ELFWriter::OutputSectionsAndSectionTable() {
|
||||
// Pass #1: Compute the file offset for each section.
|
||||
size_t FileOff = FileHeader.size(); // File header first.
|
||||
size_t FileOff = ElfHdr.size(); // File header first.
|
||||
|
||||
// Adjust alignment of all section if needed.
|
||||
for (std::list<ELFSection>::iterator I = SectionList.begin(),
|
||||
@ -559,14 +541,14 @@ void ELFWriter::OutputSectionsAndSectionTable() {
|
||||
if (!I->SectionIdx)
|
||||
continue;
|
||||
|
||||
if (!I->SectionData.size()) {
|
||||
if (!I->size()) {
|
||||
I->Offset = FileOff;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Update Section size
|
||||
if (!I->Size)
|
||||
I->Size = I->SectionData.size();
|
||||
I->Size = I->size();
|
||||
|
||||
// Align FileOff to whatever the alignment restrictions of the section are.
|
||||
if (I->Align)
|
||||
@ -582,43 +564,40 @@ void ELFWriter::OutputSectionsAndSectionTable() {
|
||||
|
||||
// Now that we know where all of the sections will be emitted, set the e_shnum
|
||||
// entry in the ELF header.
|
||||
OutputBuffer FHOut(FileHeader, is64Bit, isLittleEndian);
|
||||
FHOut.fixhalf(NumSections, ELFHdr_e_shnum_Offset);
|
||||
ElfHdr.fixWord16(NumSections, ELFHdr_e_shnum_Offset);
|
||||
|
||||
// Now that we know the offset in the file of the section table, update the
|
||||
// e_shoff address in the ELF header.
|
||||
FHOut.fixaddr(FileOff, ELFHdr_e_shoff_Offset);
|
||||
ElfHdr.fixWord(FileOff, ELFHdr_e_shoff_Offset);
|
||||
|
||||
// Now that we know all of the data in the file header, emit it and all of the
|
||||
// sections!
|
||||
O.write((char*)&FileHeader[0], FileHeader.size());
|
||||
FileOff = FileHeader.size();
|
||||
DataBuffer().swap(FileHeader);
|
||||
O.write((char *)&ElfHdr.getData()[0], ElfHdr.size());
|
||||
FileOff = ElfHdr.size();
|
||||
|
||||
DataBuffer Table;
|
||||
OutputBuffer TableOut(Table, is64Bit, isLittleEndian);
|
||||
// Section Header Table blob
|
||||
BinaryObject SHdrTable(isLittleEndian, is64Bit);
|
||||
|
||||
// Emit all of the section data and build the section table itself.
|
||||
// Emit all of sections to the file and build the section header table.
|
||||
while (!SectionList.empty()) {
|
||||
const ELFSection &S = *SectionList.begin();
|
||||
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.Name
|
||||
ELFSection &S = *SectionList.begin();
|
||||
DOUT << "SectionIdx: " << S.SectionIdx << ", Name: " << S.getName()
|
||||
<< ", Size: " << S.Size << ", Offset: " << S.Offset
|
||||
<< ", SectionData Size: " << S.SectionData.size() << "\n";
|
||||
|
||||
<< ", SectionData Size: " << S.size() << "\n";
|
||||
|
||||
// Align FileOff to whatever the alignment restrictions of the section are.
|
||||
if (S.Align) {
|
||||
for (size_t NewFileOff = (FileOff+S.Align-1) & ~(S.Align-1);
|
||||
FileOff != NewFileOff; ++FileOff)
|
||||
FileOff != NewFileOff; ++FileOff)
|
||||
O << (char)0xAB;
|
||||
}
|
||||
|
||||
if (S.SectionData.size()) {
|
||||
O.write((char*)&S.SectionData[0], S.Size);
|
||||
if (S.size()) {
|
||||
O.write((char *)&S.getData()[0], S.Size);
|
||||
FileOff += S.Size;
|
||||
}
|
||||
|
||||
EmitSectionHeader(TableOut, S);
|
||||
EmitSectionHeader(SHdrTable, S);
|
||||
SectionList.pop_front();
|
||||
}
|
||||
|
||||
@ -628,5 +607,5 @@ void ELFWriter::OutputSectionsAndSectionTable() {
|
||||
O << (char)0xAB;
|
||||
|
||||
// Emit the section table itself.
|
||||
O.write((char*)&Table[0], Table.size());
|
||||
O.write((char *)&SHdrTable.getData()[0], SHdrTable.size());
|
||||
}
|
||||
|
@ -24,6 +24,7 @@
|
||||
#include <map>
|
||||
|
||||
namespace llvm {
|
||||
class BinaryObject;
|
||||
class ConstantStruct;
|
||||
class ELFCodeEmitter;
|
||||
class GlobalVariable;
|
||||
@ -56,6 +57,9 @@ namespace llvm {
|
||||
/// Target machine description.
|
||||
TargetMachine &TM;
|
||||
|
||||
/// Target Elf Writer description.
|
||||
const TargetELFWriterInfo *TEW;
|
||||
|
||||
/// Mang - The object used to perform name mangling for this module.
|
||||
Mangler *Mang;
|
||||
|
||||
@ -85,13 +89,8 @@ namespace llvm {
|
||||
bool doFinalization(Module &M);
|
||||
|
||||
private:
|
||||
// The buffer we accumulate the file header into. Note that this should be
|
||||
// changed into something much more efficient later (and the bitcode writer
|
||||
// as well!).
|
||||
DataBuffer FileHeader;
|
||||
|
||||
/// ElfHdr - Hold information about the ELF Header
|
||||
ELFHeader *ElfHdr;
|
||||
// Blob containing the Elf header
|
||||
BinaryObject ElfHdr;
|
||||
|
||||
/// SectionList - This is the list of sections that we have emitted to the
|
||||
/// file. Once the file has been completely built, the section header table
|
||||
@ -110,7 +109,7 @@ namespace llvm {
|
||||
ELFSection *&SN = SectionLookup[Name];
|
||||
if (SN) return *SN;
|
||||
|
||||
SectionList.push_back(Name);
|
||||
SectionList.push_back(ELFSection(Name, isLittleEndian, is64Bit));
|
||||
SN = &SectionList.back();
|
||||
SN->SectionIdx = NumSections++;
|
||||
SN->Type = Type;
|
||||
@ -125,6 +124,10 @@ namespace llvm {
|
||||
ELFSection::SHF_EXECINSTR | ELFSection::SHF_ALLOC);
|
||||
}
|
||||
|
||||
ELFSection &getNonExecStackSection() {
|
||||
return getSection(".note.GNU-stack", ELFSection::SHT_PROGBITS, 0, 1);
|
||||
}
|
||||
|
||||
ELFSection &getSymbolTableSection() {
|
||||
return getSection(".symtab", ELFSection::SHT_SYMTAB, 0);
|
||||
}
|
||||
@ -143,14 +146,14 @@ namespace llvm {
|
||||
ELFSection::SHF_WRITE | ELFSection::SHF_ALLOC);
|
||||
}
|
||||
|
||||
/// SymbolTable - This is the list of symbols we have emitted to the file.
|
||||
/// SymbolList - This is the list of symbols we have emitted to the file.
|
||||
/// This actually gets rearranged before emission to the file (to put the
|
||||
/// local symbols first in the list).
|
||||
std::vector<ELFSym> SymbolTable;
|
||||
std::vector<ELFSym> SymbolList;
|
||||
|
||||
/// PendingSyms - This is a list of externally defined symbols that we have
|
||||
/// been asked to emit, but have not seen a reference to. When a reference
|
||||
/// is seen, the symbol will move from this list to the SymbolTable.
|
||||
/// PendingGlobals - List of externally defined symbols that we have been
|
||||
/// asked to emit, but have not seen a reference to. When a reference
|
||||
/// is seen, the symbol will move from this list to the SymbolList.
|
||||
SetVector<GlobalValue*> PendingGlobals;
|
||||
|
||||
// As we complete the ELF file, we need to update fields in the ELF header
|
||||
@ -160,15 +163,16 @@ namespace llvm {
|
||||
unsigned ELFHdr_e_shoff_Offset; // e_shoff in ELF header.
|
||||
unsigned ELFHdr_e_shstrndx_Offset; // e_shstrndx in ELF header.
|
||||
unsigned ELFHdr_e_shnum_Offset; // e_shnum in ELF header.
|
||||
|
||||
private:
|
||||
void EmitGlobal(GlobalVariable *GV);
|
||||
void EmitGlobalConstant(const Constant *C, OutputBuffer &GblCstTab);
|
||||
void EmitGlobalConstant(const Constant *C, ELFSection &GblS);
|
||||
void EmitGlobalConstantStruct(const ConstantStruct *CVS,
|
||||
OutputBuffer &GblCstTab);
|
||||
ELFSection &GblS);
|
||||
void EmitRelocations();
|
||||
void EmitSectionHeader(OutputBuffer &TableOut, const ELFSection &Section);
|
||||
void EmitSectionHeader(BinaryObject &SHdrTab, const ELFSection &SHdr);
|
||||
void EmitSectionTableStringTable();
|
||||
void EmitSymbol(OutputBuffer &SymTabOut, ELFSym &Sym);
|
||||
void EmitSymbol(BinaryObject &SymbolTable, ELFSym &Sym);
|
||||
void EmitSymbolTable();
|
||||
void OutputSectionsAndSectionTable();
|
||||
};
|
||||
|
@ -17,7 +17,10 @@
|
||||
#include "llvm/Target/TargetMachine.h"
|
||||
using namespace llvm;
|
||||
|
||||
TargetELFWriterInfo::TargetELFWriterInfo(TargetMachine &tm) : TM(tm) {}
|
||||
TargetELFWriterInfo::TargetELFWriterInfo(TargetMachine &tm) : TM(tm) {
|
||||
is64Bit = TM.getTargetData()->getPointerSizeInBits() == 64;
|
||||
isLittleEndian = TM.getTargetData()->isLittleEndian();
|
||||
}
|
||||
|
||||
TargetELFWriterInfo::~TargetELFWriterInfo() {}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user