llvm-6502/lib/VMCore/Verifier.cpp

1915 lines
73 KiB
C++
Raw Normal View History

//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the function verifier interface, that can be used for some
// sanity checking of input to the system.
//
// Note that this does not provide full `Java style' security and verifications,
// instead it just tries to ensure that code is well-formed.
//
// * Both of a binary operator's parameters are of the same type
// * Verify that the indices of mem access instructions match other operands
// * Verify that arithmetic and other things are only performed on first-class
// types. Verify that shifts & logicals only happen on integrals f.e.
// * All of the constants in a switch statement are of the correct type
// * The code is in valid SSA form
// * It should be illegal to put a label into any other type (like a structure)
// or to return one. [except constant arrays!]
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
// * PHI nodes must have an entry for each predecessor, with no extras.
// * PHI nodes must be the first thing in a basic block, all grouped together
// * PHI nodes must have at least one entry
// * All basic blocks should only end with terminator insts, not contain them
// * The entry node to a function must not have predecessors
// * All Instructions must be embedded into a basic block
// * Functions cannot take a void-typed parameter
// * Verify that a function's argument list agrees with it's declared type.
// * It is illegal to specify a name for a void value.
// * It is illegal to have a internal global value with no initializer
// * It is illegal to have a ret instruction that returns a value that does not
// agree with the function return value type.
// * Function call argument types match the function prototype
// * A landing pad is defined by a landingpad instruction, and can be jumped to
// only by the unwind edge of an invoke instruction.
// * A landingpad instruction must be the first non-PHI instruction in the
// block.
// * All landingpad instructions must use the same personality function with
// the same function.
// * All other things that are tested by asserts spread about the code...
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Verifier.h"
#include "llvm/CallingConv.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/InlineAsm.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/LLVMContext.h"
#include "llvm/Metadata.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/PassManager.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/ConstantRange.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdarg>
using namespace llvm;
namespace { // Anonymous namespace for class
struct PreVerifier : public FunctionPass {
static char ID; // Pass ID, replacement for typeid
PreVerifier() : FunctionPass(ID) {
initializePreVerifierPass(*PassRegistry::getPassRegistry());
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
// Check that the prerequisites for successful DominatorTree construction
// are satisfied.
bool runOnFunction(Function &F) {
bool Broken = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
if (I->empty() || !I->back().isTerminator()) {
dbgs() << "Basic Block in function '" << F.getName()
<< "' does not have terminator!\n";
WriteAsOperand(dbgs(), I, true);
dbgs() << "\n";
Broken = true;
}
}
if (Broken)
report_fatal_error("Broken module, no Basic Block terminator!");
return false;
}
};
}
char PreVerifier::ID = 0;
INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
false, false)
static char &PreVerifyID = PreVerifier::ID;
namespace {
struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
static char ID; // Pass ID, replacement for typeid
bool Broken; // Is this module found to be broken?
VerifierFailureAction action;
// What to do if verification fails.
Module *Mod; // Module we are verifying right now
LLVMContext *Context; // Context within which we are verifying
DominatorTree *DT; // Dominator Tree, caution can be null!
std::string Messages;
raw_string_ostream MessagesStr;
/// InstInThisBlock - when verifying a basic block, keep track of all of the
/// instructions we have seen so far. This allows us to do efficient
/// dominance checks for the case when an instruction has an operand that is
/// an instruction in the same block.
SmallPtrSet<Instruction*, 16> InstsInThisBlock;
/// MDNodes - keep track of the metadata nodes that have been checked
/// already.
SmallPtrSet<MDNode *, 32> MDNodes;
/// PersonalityFn - The personality function referenced by the
/// LandingPadInsts. All LandingPadInsts within the same function must use
/// the same personality function.
const Value *PersonalityFn;
Verifier()
: FunctionPass(ID), Broken(false),
action(AbortProcessAction), Mod(0), Context(0), DT(0),
MessagesStr(Messages), PersonalityFn(0) {
initializeVerifierPass(*PassRegistry::getPassRegistry());
}
explicit Verifier(VerifierFailureAction ctn)
: FunctionPass(ID), Broken(false), action(ctn), Mod(0),
Context(0), DT(0), MessagesStr(Messages), PersonalityFn(0) {
initializeVerifierPass(*PassRegistry::getPassRegistry());
}
bool doInitialization(Module &M) {
Mod = &M;
Context = &M.getContext();
// We must abort before returning back to the pass manager, or else the
// pass manager may try to run other passes on the broken module.
return abortIfBroken();
}
bool runOnFunction(Function &F) {
// Get dominator information if we are being run by PassManager
DT = &getAnalysis<DominatorTree>();
Mod = F.getParent();
if (!Context) Context = &F.getContext();
visit(F);
InstsInThisBlock.clear();
PersonalityFn = 0;
// We must abort before returning back to the pass manager, or else the
// pass manager may try to run other passes on the broken module.
return abortIfBroken();
}
bool doFinalization(Module &M) {
// Scan through, checking all of the external function's linkage now...
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
visitGlobalValue(*I);
// Check to make sure function prototypes are okay.
if (I->isDeclaration()) visitFunction(*I);
}
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I)
visitGlobalVariable(*I);
for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
I != E; ++I)
visitGlobalAlias(*I);
for (Module::named_metadata_iterator I = M.named_metadata_begin(),
E = M.named_metadata_end(); I != E; ++I)
visitNamedMDNode(*I);
// If the module is broken, abort at this time.
return abortIfBroken();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredID(PreVerifyID);
AU.addRequired<DominatorTree>();
}
/// abortIfBroken - If the module is broken and we are supposed to abort on
/// this condition, do so.
///
bool abortIfBroken() {
if (!Broken) return false;
MessagesStr << "Broken module found, ";
switch (action) {
case AbortProcessAction:
MessagesStr << "compilation aborted!\n";
dbgs() << MessagesStr.str();
// Client should choose different reaction if abort is not desired
abort();
case PrintMessageAction:
MessagesStr << "verification continues.\n";
dbgs() << MessagesStr.str();
return false;
case ReturnStatusAction:
MessagesStr << "compilation terminated.\n";
return true;
}
llvm_unreachable("Invalid action");
}
// Verification methods...
void visitGlobalValue(GlobalValue &GV);
void visitGlobalVariable(GlobalVariable &GV);
void visitGlobalAlias(GlobalAlias &GA);
void visitNamedMDNode(NamedMDNode &NMD);
void visitMDNode(MDNode &MD, Function *F);
void visitFunction(Function &F);
void visitBasicBlock(BasicBlock &BB);
using InstVisitor<Verifier>::visit;
void visit(Instruction &I);
void visitTruncInst(TruncInst &I);
void visitZExtInst(ZExtInst &I);
void visitSExtInst(SExtInst &I);
void visitFPTruncInst(FPTruncInst &I);
void visitFPExtInst(FPExtInst &I);
void visitFPToUIInst(FPToUIInst &I);
void visitFPToSIInst(FPToSIInst &I);
void visitUIToFPInst(UIToFPInst &I);
void visitSIToFPInst(SIToFPInst &I);
void visitIntToPtrInst(IntToPtrInst &I);
void visitPtrToIntInst(PtrToIntInst &I);
void visitBitCastInst(BitCastInst &I);
void visitPHINode(PHINode &PN);
void visitBinaryOperator(BinaryOperator &B);
void visitICmpInst(ICmpInst &IC);
void visitFCmpInst(FCmpInst &FC);
void visitExtractElementInst(ExtractElementInst &EI);
void visitInsertElementInst(InsertElementInst &EI);
void visitShuffleVectorInst(ShuffleVectorInst &EI);
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
void visitCallInst(CallInst &CI);
void visitInvokeInst(InvokeInst &II);
void visitGetElementPtrInst(GetElementPtrInst &GEP);
void visitLoadInst(LoadInst &LI);
void visitStoreInst(StoreInst &SI);
void verifyDominatesUse(Instruction &I, unsigned i);
void visitInstruction(Instruction &I);
void visitTerminatorInst(TerminatorInst &I);
void visitBranchInst(BranchInst &BI);
void visitReturnInst(ReturnInst &RI);
void visitSwitchInst(SwitchInst &SI);
void visitIndirectBrInst(IndirectBrInst &BI);
void visitSelectInst(SelectInst &SI);
void visitUserOp1(Instruction &I);
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
void visitAtomicRMWInst(AtomicRMWInst &RMWI);
void visitFenceInst(FenceInst &FI);
void visitAllocaInst(AllocaInst &AI);
void visitExtractValueInst(ExtractValueInst &EVI);
void visitInsertValueInst(InsertValueInst &IVI);
void visitLandingPadInst(LandingPadInst &LPI);
void VerifyCallSite(CallSite CS);
bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
int VT, unsigned ArgNo, std::string &Suffix);
bool VerifyIntrinsicType(Type *Ty,
ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type*> &ArgTys);
void VerifyParameterAttrs(Attributes Attrs, Type *Ty,
bool isReturnValue, const Value *V);
void VerifyFunctionAttrs(FunctionType *FT, const AttrListPtr &Attrs,
const Value *V);
void WriteValue(const Value *V) {
if (!V) return;
if (isa<Instruction>(V)) {
MessagesStr << *V << '\n';
} else {
WriteAsOperand(MessagesStr, V, true, Mod);
MessagesStr << '\n';
}
}
void WriteType(Type *T) {
if (!T) return;
MessagesStr << ' ' << *T;
}
// CheckFailed - A check failed, so print out the condition and the message
// that failed. This provides a nice place to put a breakpoint if you want
// to see why something is not correct.
void CheckFailed(const Twine &Message,
const Value *V1 = 0, const Value *V2 = 0,
const Value *V3 = 0, const Value *V4 = 0) {
MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteValue(V2);
WriteValue(V3);
WriteValue(V4);
Broken = true;
}
void CheckFailed(const Twine &Message, const Value *V1,
Type *T2, const Value *V3 = 0) {
MessagesStr << Message.str() << "\n";
WriteValue(V1);
WriteType(T2);
WriteValue(V3);
Broken = true;
}
void CheckFailed(const Twine &Message, Type *T1,
Type *T2 = 0, Type *T3 = 0) {
MessagesStr << Message.str() << "\n";
WriteType(T1);
WriteType(T2);
WriteType(T3);
Broken = true;
}
};
} // End anonymous namespace
char Verifier::ID = 0;
INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
INITIALIZE_PASS_DEPENDENCY(PreVerifier)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
// Assert - We know that cond should be true, if not print an error message.
#define Assert(C, M) \
do { if (!(C)) { CheckFailed(M); return; } } while (0)
#define Assert1(C, M, V1) \
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
#define Assert2(C, M, V1, V2) \
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
#define Assert3(C, M, V1, V2, V3) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
#define Assert4(C, M, V1, V2, V3, V4) \
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
void Verifier::visit(Instruction &I) {
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
Assert1(I.getOperand(i) != 0, "Operand is null", &I);
InstVisitor<Verifier>::visit(I);
}
void Verifier::visitGlobalValue(GlobalValue &GV) {
Assert1(!GV.isDeclaration() ||
GV.isMaterializable() ||
GV.hasExternalLinkage() ||
GV.hasDLLImportLinkage() ||
GV.hasExternalWeakLinkage() ||
(isa<GlobalAlias>(GV) &&
(GV.hasLocalLinkage() || GV.hasWeakLinkage())),
"Global is external, but doesn't have external or dllimport or weak linkage!",
&GV);
Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
"Global is marked as dllimport, but not external", &GV);
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
"Only global variables can have appending linkage!", &GV);
if (GV.hasAppendingLinkage()) {
GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
"Only global arrays can have appending linkage!", GVar);
}
Assert1(!GV.hasLinkerPrivateWeakDefAutoLinkage() || GV.hasDefaultVisibility(),
"linker_private_weak_def_auto can only have default visibility!",
&GV);
}
void Verifier::visitGlobalVariable(GlobalVariable &GV) {
if (GV.hasInitializer()) {
Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
"Global variable initializer type does not match global "
"variable type!", &GV);
// If the global has common linkage, it must have a zero initializer and
// cannot be constant.
if (GV.hasCommonLinkage()) {
Assert1(GV.getInitializer()->isNullValue(),
"'common' global must have a zero initializer!", &GV);
Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
&GV);
}
} else {
Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
GV.hasExternalWeakLinkage(),
"invalid linkage type for global declaration", &GV);
}
if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
GV.getName() == "llvm.global_dtors")) {
Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
"invalid linkage for intrinsic global variable", &GV);
// Don't worry about emitting an error for it not being an array,
// visitGlobalValue will complain on appending non-array.
if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
StructType *STy = dyn_cast<StructType>(ATy->getElementType());
PointerType *FuncPtrTy =
FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
Assert1(STy && STy->getNumElements() == 2 &&
STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
STy->getTypeAtIndex(1) == FuncPtrTy,
"wrong type for intrinsic global variable", &GV);
}
}
visitGlobalValue(GV);
}
void Verifier::visitGlobalAlias(GlobalAlias &GA) {
Assert1(!GA.getName().empty(),
"Alias name cannot be empty!", &GA);
Assert1(GA.hasExternalLinkage() || GA.hasLocalLinkage() ||
GA.hasWeakLinkage(),
"Alias should have external or external weak linkage!", &GA);
Assert1(GA.getAliasee(),
"Aliasee cannot be NULL!", &GA);
Assert1(GA.getType() == GA.getAliasee()->getType(),
"Alias and aliasee types should match!", &GA);
Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
if (!isa<GlobalValue>(GA.getAliasee())) {
const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
Assert1(CE &&
(CE->getOpcode() == Instruction::BitCast ||
CE->getOpcode() == Instruction::GetElementPtr) &&
isa<GlobalValue>(CE->getOperand(0)),
"Aliasee should be either GlobalValue or bitcast of GlobalValue",
&GA);
}
const GlobalValue* Aliasee = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
Assert1(Aliasee,
"Aliasing chain should end with function or global variable", &GA);
visitGlobalValue(GA);
}
void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
MDNode *MD = NMD.getOperand(i);
if (!MD)
continue;
Assert1(!MD->isFunctionLocal(),
"Named metadata operand cannot be function local!", MD);
visitMDNode(*MD, 0);
}
}
void Verifier::visitMDNode(MDNode &MD, Function *F) {
// Only visit each node once. Metadata can be mutually recursive, so this
// avoids infinite recursion here, as well as being an optimization.
if (!MDNodes.insert(&MD))
return;
for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
Value *Op = MD.getOperand(i);
if (!Op)
continue;
if (isa<Constant>(Op) || isa<MDString>(Op))
continue;
if (MDNode *N = dyn_cast<MDNode>(Op)) {
Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
"Global metadata operand cannot be function local!", &MD, N);
visitMDNode(*N, F);
continue;
}
Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
// If this was an instruction, bb, or argument, verify that it is in the
// function that we expect.
Function *ActualF = 0;
if (Instruction *I = dyn_cast<Instruction>(Op))
ActualF = I->getParent()->getParent();
else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
ActualF = BB->getParent();
else if (Argument *A = dyn_cast<Argument>(Op))
ActualF = A->getParent();
assert(ActualF && "Unimplemented function local metadata case!");
Assert2(ActualF == F, "function-local metadata used in wrong function",
&MD, Op);
}
}
// VerifyParameterAttrs - Check the given attributes for an argument or return
// value of the specified type. The value V is printed in error messages.
void Verifier::VerifyParameterAttrs(Attributes Attrs, Type *Ty,
bool isReturnValue, const Value *V) {
if (Attrs == Attribute::None)
return;
Attributes FnCheckAttr = Attrs & Attribute::FunctionOnly;
Assert1(!FnCheckAttr, "Attribute " + Attribute::getAsString(FnCheckAttr) +
" only applies to the function!", V);
if (isReturnValue) {
Attributes RetI = Attrs & Attribute::ParameterOnly;
Assert1(!RetI, "Attribute " + Attribute::getAsString(RetI) +
" does not apply to return values!", V);
}
for (unsigned i = 0;
i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
Attributes MutI = Attrs & Attribute::MutuallyIncompatible[i];
Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
Attribute::getAsString(MutI) + " are incompatible!", V);
}
Attributes TypeI = Attrs & Attribute::typeIncompatible(Ty);
Assert1(!TypeI, "Wrong type for attribute " +
Attribute::getAsString(TypeI), V);
Attributes ByValI = Attrs & Attribute::ByVal;
if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
Assert1(!ByValI || PTy->getElementType()->isSized(),
"Attribute " + Attribute::getAsString(ByValI) +
" does not support unsized types!", V);
} else {
Assert1(!ByValI,
"Attribute " + Attribute::getAsString(ByValI) +
" only applies to parameters with pointer type!", V);
}
}
// VerifyFunctionAttrs - Check parameter attributes against a function type.
// The value V is printed in error messages.
void Verifier::VerifyFunctionAttrs(FunctionType *FT,
const AttrListPtr &Attrs,
const Value *V) {
if (Attrs.isEmpty())
return;
bool SawNest = false;
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
const AttributeWithIndex &Attr = Attrs.getSlot(i);
Type *Ty;
if (Attr.Index == 0)
Ty = FT->getReturnType();
else if (Attr.Index-1 < FT->getNumParams())
Ty = FT->getParamType(Attr.Index-1);
else
break; // VarArgs attributes, verified elsewhere.
VerifyParameterAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
if (Attr.Attrs & Attribute::Nest) {
Assert1(!SawNest, "More than one parameter has attribute nest!", V);
SawNest = true;
}
if (Attr.Attrs & Attribute::StructRet)
Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
}
Attributes FAttrs = Attrs.getFnAttributes();
Attributes NotFn = FAttrs & (~Attribute::FunctionOnly);
Assert1(!NotFn, "Attribute " + Attribute::getAsString(NotFn) +
" does not apply to the function!", V);
for (unsigned i = 0;
i < array_lengthof(Attribute::MutuallyIncompatible); ++i) {
Attributes MutI = FAttrs & Attribute::MutuallyIncompatible[i];
Assert1(MutI.isEmptyOrSingleton(), "Attributes " +
Attribute::getAsString(MutI) + " are incompatible!", V);
}
}
static bool VerifyAttributeCount(const AttrListPtr &Attrs, unsigned Params) {
if (Attrs.isEmpty())
return true;
unsigned LastSlot = Attrs.getNumSlots() - 1;
unsigned LastIndex = Attrs.getSlot(LastSlot).Index;
if (LastIndex <= Params
|| (LastIndex == (unsigned)~0
&& (LastSlot == 0 || Attrs.getSlot(LastSlot - 1).Index <= Params)))
return true;
return false;
}
// visitFunction - Verify that a function is ok.
//
void Verifier::visitFunction(Function &F) {
// Check function arguments.
FunctionType *FT = F.getFunctionType();
unsigned NumArgs = F.arg_size();
Assert1(Context == &F.getContext(),
"Function context does not match Module context!", &F);
Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
Assert2(FT->getNumParams() == NumArgs,
"# formal arguments must match # of arguments for function type!",
&F, FT);
Assert1(F.getReturnType()->isFirstClassType() ||
F.getReturnType()->isVoidTy() ||
F.getReturnType()->isStructTy(),
"Functions cannot return aggregate values!", &F);
Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
"Invalid struct return type!", &F);
const AttrListPtr &Attrs = F.getAttributes();
Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
"Attributes after last parameter!", &F);
// Check function attributes.
VerifyFunctionAttrs(FT, Attrs, &F);
// Check that this function meets the restrictions on this calling convention.
switch (F.getCallingConv()) {
default:
break;
case CallingConv::C:
break;
case CallingConv::Fast:
case CallingConv::Cold:
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::PTX_Kernel:
case CallingConv::PTX_Device:
Assert1(!F.isVarArg(),
"Varargs functions must have C calling conventions!", &F);
break;
}
bool isLLVMdotName = F.getName().size() >= 5 &&
F.getName().substr(0, 5) == "llvm.";
// Check that the argument values match the function type for this function...
unsigned i = 0;
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
I != E; ++I, ++i) {
Assert2(I->getType() == FT->getParamType(i),
"Argument value does not match function argument type!",
I, FT->getParamType(i));
Assert1(I->getType()->isFirstClassType(),
"Function arguments must have first-class types!", I);
if (!isLLVMdotName)
Assert2(!I->getType()->isMetadataTy(),
"Function takes metadata but isn't an intrinsic", I, &F);
}
if (F.isMaterializable()) {
// Function has a body somewhere we can't see.
} else if (F.isDeclaration()) {
Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
F.hasExternalWeakLinkage(),
"invalid linkage type for function declaration", &F);
} else {
// Verify that this function (which has a body) is not named "llvm.*". It
// is not legal to define intrinsics.
Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
// Check the entry node
BasicBlock *Entry = &F.getEntryBlock();
Assert1(pred_begin(Entry) == pred_end(Entry),
"Entry block to function must not have predecessors!", Entry);
// The address of the entry block cannot be taken, unless it is dead.
if (Entry->hasAddressTaken()) {
Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
"blockaddress may not be used with the entry block!", Entry);
}
}
// If this function is actually an intrinsic, verify that it is only used in
// direct call/invokes, never having its "address taken".
if (F.getIntrinsicID()) {
const User *U;
if (F.hasAddressTaken(&U))
Assert1(0, "Invalid user of intrinsic instruction!", U);
}
}
// verifyBasicBlock - Verify that a basic block is well formed...
//
void Verifier::visitBasicBlock(BasicBlock &BB) {
InstsInThisBlock.clear();
// Ensure that basic blocks have terminators!
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
// Check constraints that this basic block imposes on all of the PHI nodes in
// it.
if (isa<PHINode>(BB.front())) {
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
std::sort(Preds.begin(), Preds.end());
PHINode *PN;
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
// Ensure that PHI nodes have at least one entry!
Assert1(PN->getNumIncomingValues() != 0,
"PHI nodes must have at least one entry. If the block is dead, "
"the PHI should be removed!", PN);
Assert1(PN->getNumIncomingValues() == Preds.size(),
"PHINode should have one entry for each predecessor of its "
"parent basic block!", PN);
// Get and sort all incoming values in the PHI node...
Values.clear();
Values.reserve(PN->getNumIncomingValues());
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
PN->getIncomingValue(i)));
std::sort(Values.begin(), Values.end());
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
// Check to make sure that if there is more than one entry for a
// particular basic block in this PHI node, that the incoming values are
// all identical.
//
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
Values[i].second == Values[i-1].second,
"PHI node has multiple entries for the same basic block with "
"different incoming values!", PN, Values[i].first,
Values[i].second, Values[i-1].second);
// Check to make sure that the predecessors and PHI node entries are
// matched up.
Assert3(Values[i].first == Preds[i],
"PHI node entries do not match predecessors!", PN,
Values[i].first, Preds[i]);
}
}
}
}
void Verifier::visitTerminatorInst(TerminatorInst &I) {
// Ensure that terminators only exist at the end of the basic block.
Assert1(&I == I.getParent()->getTerminator(),
"Terminator found in the middle of a basic block!", I.getParent());
visitInstruction(I);
}
void Verifier::visitBranchInst(BranchInst &BI) {
if (BI.isConditional()) {
Assert2(BI.getCondition()->getType()->isIntegerTy(1),
"Branch condition is not 'i1' type!", &BI, BI.getCondition());
}
visitTerminatorInst(BI);
}
void Verifier::visitReturnInst(ReturnInst &RI) {
Function *F = RI.getParent()->getParent();
unsigned N = RI.getNumOperands();
if (F->getReturnType()->isVoidTy())
Assert2(N == 0,
"Found return instr that returns non-void in Function of void "
"return type!", &RI, F->getReturnType());
else
Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
"Function return type does not match operand "
"type of return inst!", &RI, F->getReturnType());
// Check to make sure that the return value has necessary properties for
// terminators...
visitTerminatorInst(RI);
}
void Verifier::visitSwitchInst(SwitchInst &SI) {
// Check to make sure that all of the constants in the switch instruction
// have the same type as the switched-on value.
Type *SwitchTy = SI.getCondition()->getType();
PR1255: Case Ranges Implemented IntItem - the wrapper around APInt. Why not to use APInt item directly right now? 1. It will very difficult to implement case ranges as series of small patches. We got several large and heavy patches. Each patch will about 90-120 kb. If you replace ConstantInt with APInt in SwitchInst you will need to changes at the same time all Readers,Writers and absolutely all passes that uses SwitchInst. 2. We can implement APInt pool inside and save memory space. E.g. we use several switches that works with 256 bit items (switch on signatures, or strings). We can avoid value duplicates in this case. 3. IntItem can be easyly easily replaced with APInt. 4. Currenly we can interpret IntItem both as ConstantInt and as APInt. It allows to provide SwitchInst methods that works with ConstantInt for non-updated passes. Why I need it right now? Currently I need to update SimplifyCFG pass (EqualityComparisons). I need to work with APInts directly a lot, so peaces of code ConstantInt *V = ...; if (V->getValue().ugt(AnotherV->getValue()) { ... } will look awful. Much more better this way: IntItem V = ConstantIntVal->getValue(); if (AnotherV < V) { } Of course any reviews are welcome. P.S.: I'm also going to rename ConstantRangesSet to IntegersSubset, and CRSBuilder to IntegersSubsetMapping (allows to map individual subsets of integers to the BasicBlocks). Since in future these classes will founded on APInt, it will possible to use them in more generic ways. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@157576 91177308-0d34-0410-b5e6-96231b3b80d8
2012-05-28 12:39:09 +00:00
IntegerType *IntTy = cast<IntegerType>(SwitchTy);
IntegersSubsetToBB Mapping;
std::map<IntegersSubset::Range, unsigned> RangeSetMap;
for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
IntegersSubset CaseRanges = i.getCaseValueEx();
for (unsigned ri = 0, rie = CaseRanges.getNumItems(); ri < rie; ++ri) {
IntegersSubset::Range r = CaseRanges.getItem(ri);
Assert1(((const APInt&)r.getLow()).getBitWidth() == IntTy->getBitWidth(),
"Switch constants must all be same type as switch value!", &SI);
Assert1(((const APInt&)r.getHigh()).getBitWidth() == IntTy->getBitWidth(),
"Switch constants must all be same type as switch value!", &SI);
Mapping.add(r);
RangeSetMap[r] = i.getCaseIndex();
}
}
IntegersSubsetToBB::RangeIterator errItem;
if (!Mapping.verify(errItem)) {
unsigned CaseIndex = RangeSetMap[errItem->first];
SwitchInst::CaseIt i(&SI, CaseIndex);
Assert2(false, "Duplicate integer as switch case", &SI, i.getCaseValueEx());
}
visitTerminatorInst(SI);
}
void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
Assert1(BI.getAddress()->getType()->isPointerTy(),
"Indirectbr operand must have pointer type!", &BI);
for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
Assert1(BI.getDestination(i)->getType()->isLabelTy(),
"Indirectbr destinations must all have pointer type!", &BI);
visitTerminatorInst(BI);
}
void Verifier::visitSelectInst(SelectInst &SI) {
Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
SI.getOperand(2)),
"Invalid operands for select instruction!", &SI);
Assert1(SI.getTrueValue()->getType() == SI.getType(),
"Select values must have same type as select instruction!", &SI);
visitInstruction(SI);
}
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
/// a pass, if any exist, it's an error.
///
void Verifier::visitUserOp1(Instruction &I) {
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
}
void Verifier::visitTruncInst(TruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"trunc source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
visitInstruction(I);
}
void Verifier::visitZExtInst(ZExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"zext source and destination must both be a vector or neither", &I);
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
visitInstruction(I);
}
void Verifier::visitSExtInst(SExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"sext source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
visitInstruction(I);
}
void Verifier::visitFPTruncInst(FPTruncInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fptrunc source and destination must both be a vector or neither",&I);
Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
visitInstruction(I);
}
void Verifier::visitFPExtInst(FPExtInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
unsigned DestBitSize = DestTy->getScalarSizeInBits();
Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"fpext source and destination must both be a vector or neither", &I);
Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
visitInstruction(I);
}
void Verifier::visitUIToFPInst(UIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"UIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVectorTy(),
"UIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVectorTy(),
"UIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"UIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitSIToFPInst(SIToFPInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"SIToFP source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isIntOrIntVectorTy(),
"SIToFP source must be integer or integer vector", &I);
Assert1(DestTy->isFPOrFPVectorTy(),
"SIToFP result must be FP or FP vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"SIToFP source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToUIInst(FPToUIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"FPToUI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
&I);
Assert1(DestTy->isIntOrIntVectorTy(),
"FPToUI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToUI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitFPToSIInst(FPToSIInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
bool SrcVec = SrcTy->isVectorTy();
bool DstVec = DestTy->isVectorTy();
Assert1(SrcVec == DstVec,
"FPToSI source and dest must both be vector or scalar", &I);
Assert1(SrcTy->isFPOrFPVectorTy(),
"FPToSI source must be FP or FP vector", &I);
Assert1(DestTy->isIntOrIntVectorTy(),
"FPToSI result must be integer or integer vector", &I);
if (SrcVec && DstVec)
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
cast<VectorType>(DestTy)->getNumElements(),
"FPToSI source and dest vector length mismatch", &I);
visitInstruction(I);
}
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert1(SrcTy->getScalarType()->isPointerTy(),
"PtrToInt source must be pointer", &I);
Assert1(DestTy->getScalarType()->isIntegerTy(),
"PtrToInt result must be integral", &I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"PtrToInt type mismatch", &I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
Assert1(VSrc->getNumElements() == VDest->getNumElements(),
"PtrToInt Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
Assert1(SrcTy->getScalarType()->isIntegerTy(),
"IntToPtr source must be an integral", &I);
Assert1(DestTy->getScalarType()->isPointerTy(),
"IntToPtr result must be a pointer",&I);
Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
"IntToPtr type mismatch", &I);
if (SrcTy->isVectorTy()) {
VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
VectorType *VDest = dyn_cast<VectorType>(DestTy);
Assert1(VSrc->getNumElements() == VDest->getNumElements(),
"IntToPtr Vector width mismatch", &I);
}
visitInstruction(I);
}
void Verifier::visitBitCastInst(BitCastInst &I) {
// Get the source and destination types
Type *SrcTy = I.getOperand(0)->getType();
Type *DestTy = I.getType();
// Get the size of the types in bits, we'll need this later
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
// BitCast implies a no-op cast of type only. No bits change.
// However, you can't cast pointers to anything but pointers.
Assert1(DestTy->isPointerTy() == DestTy->isPointerTy(),
"Bitcast requires both operands to be pointer or neither", &I);
Assert1(SrcBitSize == DestBitSize, "Bitcast requires types of same width",&I);
// Disallow aggregates.
Assert1(!SrcTy->isAggregateType(),
"Bitcast operand must not be aggregate", &I);
Assert1(!DestTy->isAggregateType(),
"Bitcast type must not be aggregate", &I);
visitInstruction(I);
}
/// visitPHINode - Ensure that a PHI node is well formed.
///
void Verifier::visitPHINode(PHINode &PN) {
// Ensure that the PHI nodes are all grouped together at the top of the block.
// This can be tested by checking whether the instruction before this is
// either nonexistent (because this is begin()) or is a PHI node. If not,
// then there is some other instruction before a PHI.
Assert2(&PN == &PN.getParent()->front() ||
isa<PHINode>(--BasicBlock::iterator(&PN)),
"PHI nodes not grouped at top of basic block!",
&PN, PN.getParent());
// Check that all of the values of the PHI node have the same type as the
// result, and that the incoming blocks are really basic blocks.
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
"PHI node operands are not the same type as the result!", &PN);
}
// All other PHI node constraints are checked in the visitBasicBlock method.
visitInstruction(PN);
}
void Verifier::VerifyCallSite(CallSite CS) {
Instruction *I = CS.getInstruction();
Assert1(CS.getCalledValue()->getType()->isPointerTy(),
"Called function must be a pointer!", I);
PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
Assert1(FPTy->getElementType()->isFunctionTy(),
"Called function is not pointer to function type!", I);
FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
// Verify that the correct number of arguments are being passed
if (FTy->isVarArg())
Assert1(CS.arg_size() >= FTy->getNumParams(),
"Called function requires more parameters than were provided!",I);
else
Assert1(CS.arg_size() == FTy->getNumParams(),
"Incorrect number of arguments passed to called function!", I);
// Verify that all arguments to the call match the function type.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
"Call parameter type does not match function signature!",
CS.getArgument(i), FTy->getParamType(i), I);
const AttrListPtr &Attrs = CS.getAttributes();
Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
"Attributes after last parameter!", I);
// Verify call attributes.
VerifyFunctionAttrs(FTy, Attrs, I);
if (FTy->isVarArg())
// Check attributes on the varargs part.
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
Attributes Attr = Attrs.getParamAttributes(Idx);
VerifyParameterAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
Attributes VArgI = Attr & Attribute::VarArgsIncompatible;
Assert1(!VArgI, "Attribute " + Attribute::getAsString(VArgI) +
" cannot be used for vararg call arguments!", I);
}
// Verify that there's no metadata unless it's a direct call to an intrinsic.
if (CS.getCalledFunction() == 0 ||
!CS.getCalledFunction()->getName().startswith("llvm.")) {
for (FunctionType::param_iterator PI = FTy->param_begin(),
PE = FTy->param_end(); PI != PE; ++PI)
Assert1(!(*PI)->isMetadataTy(),
"Function has metadata parameter but isn't an intrinsic", I);
}
visitInstruction(*I);
}
void Verifier::visitCallInst(CallInst &CI) {
VerifyCallSite(&CI);
if (Function *F = CI.getCalledFunction())
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
visitIntrinsicFunctionCall(ID, CI);
}
void Verifier::visitInvokeInst(InvokeInst &II) {
VerifyCallSite(&II);
// Verify that there is a landingpad instruction as the first non-PHI
// instruction of the 'unwind' destination.
Assert1(II.getUnwindDest()->isLandingPad(),
"The unwind destination does not have a landingpad instruction!",&II);
visitTerminatorInst(II);
}
/// visitBinaryOperator - Check that both arguments to the binary operator are
/// of the same type!
///
void Verifier::visitBinaryOperator(BinaryOperator &B) {
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
"Both operands to a binary operator are not of the same type!", &B);
switch (B.getOpcode()) {
// Check that integer arithmetic operators are only used with
// integral operands.
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::SDiv:
case Instruction::UDiv:
case Instruction::SRem:
case Instruction::URem:
Assert1(B.getType()->isIntOrIntVectorTy(),
"Integer arithmetic operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Integer arithmetic operators must have same type "
"for operands and result!", &B);
break;
// Check that floating-point arithmetic operators are only used with
// floating-point operands.
case Instruction::FAdd:
case Instruction::FSub:
case Instruction::FMul:
case Instruction::FDiv:
case Instruction::FRem:
Assert1(B.getType()->isFPOrFPVectorTy(),
"Floating-point arithmetic operators only work with "
"floating-point types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Floating-point arithmetic operators must have same type "
"for operands and result!", &B);
break;
// Check that logical operators are only used with integral operands.
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
Assert1(B.getType()->isIntOrIntVectorTy(),
"Logical operators only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Logical operators must have same type for operands and result!",
&B);
break;
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Assert1(B.getType()->isIntOrIntVectorTy(),
"Shifts only work with integral types!", &B);
Assert1(B.getType() == B.getOperand(0)->getType(),
"Shift return type must be same as operands!", &B);
break;
default:
llvm_unreachable("Unknown BinaryOperator opcode!");
}
visitInstruction(B);
}
void Verifier::visitICmpInst(ICmpInst &IC) {
// Check that the operands are the same type
Type *Op0Ty = IC.getOperand(0)->getType();
Type *Op1Ty = IC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to ICmp instruction are not of the same type!", &IC);
// Check that the operands are the right type
Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
"Invalid operand types for ICmp instruction", &IC);
// Check that the predicate is valid.
Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
"Invalid predicate in ICmp instruction!", &IC);
visitInstruction(IC);
}
void Verifier::visitFCmpInst(FCmpInst &FC) {
// Check that the operands are the same type
Type *Op0Ty = FC.getOperand(0)->getType();
Type *Op1Ty = FC.getOperand(1)->getType();
Assert1(Op0Ty == Op1Ty,
"Both operands to FCmp instruction are not of the same type!", &FC);
// Check that the operands are the right type
Assert1(Op0Ty->isFPOrFPVectorTy(),
"Invalid operand types for FCmp instruction", &FC);
// Check that the predicate is valid.
Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
"Invalid predicate in FCmp instruction!", &FC);
visitInstruction(FC);
}
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
EI.getOperand(1)),
"Invalid extractelement operands!", &EI);
visitInstruction(EI);
}
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
IE.getOperand(1),
IE.getOperand(2)),
"Invalid insertelement operands!", &IE);
visitInstruction(IE);
}
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
SV.getOperand(2)),
"Invalid shufflevector operands!", &SV);
visitInstruction(SV);
}
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
Assert1(isa<PointerType>(TargetTy),
"GEP base pointer is not a vector or a vector of pointers", &GEP);
Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
"GEP into unsized type!", &GEP);
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
Type *ElTy =
GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
if (GEP.getPointerOperandType()->isPointerTy()) {
// Validate GEPs with scalar indices.
Assert2(GEP.getType()->isPointerTy() &&
cast<PointerType>(GEP.getType())->getElementType() == ElTy,
"GEP is not of right type for indices!", &GEP, ElTy);
} else {
// Validate GEPs with a vector index.
Assert1(Idxs.size() == 1, "Invalid number of indices!", &GEP);
Value *Index = Idxs[0];
Type *IndexTy = Index->getType();
Assert1(IndexTy->isVectorTy(),
"Vector GEP must have vector indices!", &GEP);
Assert1(GEP.getType()->isVectorTy(),
"Vector GEP must return a vector value", &GEP);
Type *ElemPtr = cast<VectorType>(GEP.getType())->getElementType();
Assert1(ElemPtr->isPointerTy(),
"Vector GEP pointer operand is not a pointer!", &GEP);
unsigned IndexWidth = cast<VectorType>(IndexTy)->getNumElements();
unsigned GepWidth = cast<VectorType>(GEP.getType())->getNumElements();
Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
Assert1(ElTy == cast<PointerType>(ElemPtr)->getElementType(),
"Vector GEP type does not match pointer type!", &GEP);
}
visitInstruction(GEP);
}
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}
void Verifier::visitLoadInst(LoadInst &LI) {
PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
Assert1(PTy, "Load operand must be a pointer.", &LI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy == LI.getType(),
"Load result type does not match pointer operand type!", &LI, ElTy);
if (LI.isAtomic()) {
Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
"Load cannot have Release ordering", &LI);
Assert1(LI.getAlignment() != 0,
"Atomic load must specify explicit alignment", &LI);
} else {
Assert1(LI.getSynchScope() == CrossThread,
"Non-atomic load cannot have SynchronizationScope specified", &LI);
}
if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
unsigned NumOperands = Range->getNumOperands();
Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
unsigned NumRanges = NumOperands / 2;
Assert1(NumRanges >= 1, "It should have at least one range!", Range);
ConstantRange LastRange(1); // Dummy initial value
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
Assert1(Low, "The lower limit must be an integer!", Low);
ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
Assert1(High, "The upper limit must be an integer!", High);
Assert1(High->getType() == Low->getType() &&
High->getType() == ElTy, "Range types must match load type!",
&LI);
APInt HighV = High->getValue();
APInt LowV = Low->getValue();
ConstantRange CurRange(LowV, HighV);
Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
"Range must not be empty!", Range);
if (i != 0) {
Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
Range);
Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
Range);
}
LastRange = ConstantRange(LowV, HighV);
}
if (NumRanges > 2) {
APInt FirstLow =
dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
APInt FirstHigh =
dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
ConstantRange FirstRange(FirstLow, FirstHigh);
Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
"Intervals are overlapping", Range);
Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
Range);
}
}
visitInstruction(LI);
}
void Verifier::visitStoreInst(StoreInst &SI) {
PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
Assert1(PTy, "Store operand must be a pointer.", &SI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy == SI.getOperand(0)->getType(),
"Stored value type does not match pointer operand type!",
&SI, ElTy);
if (SI.isAtomic()) {
Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
"Store cannot have Acquire ordering", &SI);
Assert1(SI.getAlignment() != 0,
"Atomic store must specify explicit alignment", &SI);
} else {
Assert1(SI.getSynchScope() == CrossThread,
"Non-atomic store cannot have SynchronizationScope specified", &SI);
}
visitInstruction(SI);
}
void Verifier::visitAllocaInst(AllocaInst &AI) {
PointerType *PTy = AI.getType();
Assert1(PTy->getAddressSpace() == 0,
"Allocation instruction pointer not in the generic address space!",
&AI);
Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
&AI);
Assert1(AI.getArraySize()->getType()->isIntegerTy(),
"Alloca array size must have integer type", &AI);
visitInstruction(AI);
}
void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
Assert1(CXI.getOrdering() != NotAtomic,
"cmpxchg instructions must be atomic.", &CXI);
Assert1(CXI.getOrdering() != Unordered,
"cmpxchg instructions cannot be unordered.", &CXI);
PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy == CXI.getOperand(1)->getType(),
"Expected value type does not match pointer operand type!",
&CXI, ElTy);
Assert2(ElTy == CXI.getOperand(2)->getType(),
"Stored value type does not match pointer operand type!",
&CXI, ElTy);
visitInstruction(CXI);
}
void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
Assert1(RMWI.getOrdering() != NotAtomic,
"atomicrmw instructions must be atomic.", &RMWI);
Assert1(RMWI.getOrdering() != Unordered,
"atomicrmw instructions cannot be unordered.", &RMWI);
PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
Type *ElTy = PTy->getElementType();
Assert2(ElTy == RMWI.getOperand(1)->getType(),
"Argument value type does not match pointer operand type!",
&RMWI, ElTy);
Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
"Invalid binary operation!", &RMWI);
visitInstruction(RMWI);
}
void Verifier::visitFenceInst(FenceInst &FI) {
const AtomicOrdering Ordering = FI.getOrdering();
Assert1(Ordering == Acquire || Ordering == Release ||
Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
"fence instructions may only have "
"acquire, release, acq_rel, or seq_cst ordering.", &FI);
visitInstruction(FI);
}
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
EVI.getIndices()) ==
EVI.getType(),
"Invalid ExtractValueInst operands!", &EVI);
visitInstruction(EVI);
}
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
IVI.getIndices()) ==
IVI.getOperand(1)->getType(),
"Invalid InsertValueInst operands!", &IVI);
visitInstruction(IVI);
}
void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
BasicBlock *BB = LPI.getParent();
// The landingpad instruction is ill-formed if it doesn't have any clauses and
// isn't a cleanup.
Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
"LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
// The landingpad instruction defines its parent as a landing pad block. The
// landing pad block may be branched to only by the unwind edge of an invoke.
for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
Assert1(II && II->getUnwindDest() == BB,
"Block containing LandingPadInst must be jumped to "
"only by the unwind edge of an invoke.", &LPI);
}
// The landingpad instruction must be the first non-PHI instruction in the
// block.
Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
"LandingPadInst not the first non-PHI instruction in the block.",
&LPI);
// The personality functions for all landingpad instructions within the same
// function should match.
if (PersonalityFn)
Assert1(LPI.getPersonalityFn() == PersonalityFn,
"Personality function doesn't match others in function", &LPI);
PersonalityFn = LPI.getPersonalityFn();
// All operands must be constants.
Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
&LPI);
for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
Value *Clause = LPI.getClause(i);
Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
if (LPI.isCatch(i)) {
Assert1(isa<PointerType>(Clause->getType()),
"Catch operand does not have pointer type!", &LPI);
} else {
Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
"Filter operand is not an array of constants!", &LPI);
}
}
visitInstruction(LPI);
}
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
Instruction *Op = cast<Instruction>(I.getOperand(i));
const Use &U = I.getOperandUse(i);
Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
"Instruction does not dominate all uses!", Op, &I);
}
/// verifyInstruction - Verify that an instruction is well formed.
///
void Verifier::visitInstruction(Instruction &I) {
BasicBlock *BB = I.getParent();
Assert1(BB, "Instruction not embedded in basic block!", &I);
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI)
Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
"Only PHI nodes may reference their own value!", &I);
}
// Check that void typed values don't have names
Assert1(!I.getType()->isVoidTy() || !I.hasName(),
"Instruction has a name, but provides a void value!", &I);
// Check that the return value of the instruction is either void or a legal
// value type.
Assert1(I.getType()->isVoidTy() ||
I.getType()->isFirstClassType(),
"Instruction returns a non-scalar type!", &I);
// Check that the instruction doesn't produce metadata. Calls are already
// checked against the callee type.
Assert1(!I.getType()->isMetadataTy() ||
isa<CallInst>(I) || isa<InvokeInst>(I),
"Invalid use of metadata!", &I);
// Check that all uses of the instruction, if they are instructions
// themselves, actually have parent basic blocks. If the use is not an
// instruction, it is an error!
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
UI != UE; ++UI) {
if (Instruction *Used = dyn_cast<Instruction>(*UI))
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
" embedded in a basic block!", &I, Used);
else {
CheckFailed("Use of instruction is not an instruction!", *UI);
return;
}
}
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
// Check to make sure that only first-class-values are operands to
// instructions.
if (!I.getOperand(i)->getType()->isFirstClassType()) {
Assert1(0, "Instruction operands must be first-class values!", &I);
}
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
// Check to make sure that the "address of" an intrinsic function is never
// taken.
Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
"Cannot take the address of an intrinsic!", &I);
Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
F->getIntrinsicID() == Intrinsic::donothing,
"Cannot invoke an intrinsinc other than donothing", &I);
Assert1(F->getParent() == Mod, "Referencing function in another module!",
&I);
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
Assert1(OpBB->getParent() == BB->getParent(),
"Referring to a basic block in another function!", &I);
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
Assert1(OpArg->getParent() == BB->getParent(),
"Referring to an argument in another function!", &I);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
Assert1(GV->getParent() == Mod, "Referencing global in another module!",
&I);
} else if (isa<Instruction>(I.getOperand(i))) {
verifyDominatesUse(I, i);
} else if (isa<InlineAsm>(I.getOperand(i))) {
Assert1((i + 1 == e && isa<CallInst>(I)) ||
(i + 3 == e && isa<InvokeInst>(I)),
"Cannot take the address of an inline asm!", &I);
}
}
if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
Assert1(I.getType()->isFPOrFPVectorTy(),
"fpmath requires a floating point result!", &I);
Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
Value *Op0 = MD->getOperand(0);
if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
APFloat Accuracy = CFP0->getValueAPF();
Assert1(Accuracy.isNormal() && !Accuracy.isNegative(),
"fpmath accuracy not a positive number!", &I);
} else {
Assert1(false, "invalid fpmath accuracy!", &I);
}
}
MDNode *MD = I.getMetadata(LLVMContext::MD_range);
Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
InstsInThisBlock.insert(&I);
}
/// VerifyIntrinsicType - Verify that the specified type (which comes from an
/// intrinsic argument or return value) matches the type constraints specified
/// by the .td file (e.g. an "any integer" argument really is an integer).
///
/// This return true on error but does not print a message.
bool Verifier::VerifyIntrinsicType(Type *Ty,
ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type*> &ArgTys) {
using namespace Intrinsic;
// If we ran out of descriptors, there are too many arguments.
if (Infos.empty()) return true;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void: return !Ty->isVoidTy();
case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
case IITDescriptor::Metadata: return !Ty->isMetadataTy();
case IITDescriptor::Float: return !Ty->isFloatTy();
case IITDescriptor::Double: return !Ty->isDoubleTy();
case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
case IITDescriptor::Vector: {
VectorType *VT = dyn_cast<VectorType>(Ty);
return VT == 0 || VT->getNumElements() != D.Vector_Width ||
VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
}
case IITDescriptor::Pointer: {
PointerType *PT = dyn_cast<PointerType>(Ty);
return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
}
case IITDescriptor::Struct: {
StructType *ST = dyn_cast<StructType>(Ty);
if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
return true;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
return true;
return false;
}
case IITDescriptor::Argument:
// Two cases here - If this is the second occurrence of an argument, verify
// that the later instance matches the previous instance.
if (D.getArgumentNumber() < ArgTys.size())
return Ty != ArgTys[D.getArgumentNumber()];
// Otherwise, if this is the first instance of an argument, record it and
// verify the "Any" kind.
assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
ArgTys.push_back(Ty);
switch (D.getArgumentKind()) {
case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
}
llvm_unreachable("all argument kinds not covered");
case IITDescriptor::ExtendVecArgument:
// This may only be used when referring to a previous vector argument.
return D.getArgumentNumber() >= ArgTys.size() ||
!isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getExtendedElementVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
case IITDescriptor::TruncVecArgument:
// This may only be used when referring to a previous vector argument.
return D.getArgumentNumber() >= ArgTys.size() ||
!isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getTruncatedElementVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
}
llvm_unreachable("unhandled");
}
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
///
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
Function *IF = CI.getCalledFunction();
Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
IF);
// Verify that the intrinsic prototype lines up with what the .td files
// describe.
FunctionType *IFTy = IF->getFunctionType();
Assert1(!IFTy->isVarArg(), "Intrinsic prototypes are not varargs", IF);
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
SmallVector<Type *, 4> ArgTys;
Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
"Intrinsic has incorrect return type!", IF);
for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
"Intrinsic has incorrect argument type!", IF);
Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
// Now that we have the intrinsic ID and the actual argument types (and we
// know they are legal for the intrinsic!) get the intrinsic name through the
// usual means. This allows us to verify the mangling of argument types into
// the name.
Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
"Intrinsic name not mangled correctly for type arguments!", IF);
// If the intrinsic takes MDNode arguments, verify that they are either global
// or are local to *this* function.
for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
visitMDNode(*MD, CI.getParent()->getParent());
switch (ID) {
default:
break;
case Intrinsic::ctlz: // llvm.ctlz
case Intrinsic::cttz: // llvm.cttz
Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
"is_zero_undef argument of bit counting intrinsics must be a "
"constant int", &CI);
break;
case Intrinsic::dbg_declare: { // llvm.dbg.declare
Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
"invalid llvm.dbg.declare intrinsic call 1", &CI);
MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
Assert1(MD->getNumOperands() == 1,
"invalid llvm.dbg.declare intrinsic call 2", &CI);
} break;
case Intrinsic::memcpy:
case Intrinsic::memmove:
case Intrinsic::memset:
Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
"alignment argument of memory intrinsics must be a constant int",
&CI);
Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
"isvolatile argument of memory intrinsics must be a constant int",
&CI);
break;
Reverting r55227. This was causing the following failures in the regression tests: Running /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/dg.exp ... FAIL: /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcread-ptrptr.ll for PR1633 Failed with exit(1) at line 1 while running: not llvm-as < /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcread-ptrptr.ll >& /dev/null child process exited abnormally FAIL: /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcroot-alloca.ll for PR1633 Failed with exit(1) at line 1 while running: not llvm-as < /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcroot-alloca.ll >& /dev/null child process exited abnormally FAIL: /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcroot-meta.ll for PR1633 Failed with exit(1) at line 1 while running: not llvm-as < /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcroot-meta.ll >& /dev/null child process exited abnormally FAIL: ndbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcroot-ptrptr.ll for PR1633 Failed with exit(1) at line 1 while running: not llvm-as < /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcroot-ptrptr.ll >& /dev/null child process exited abnormally FAIL: /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcwrite-ptrptr.ll for PR1633 Failed with exit(1) at line 1 while running: not llvm-as < /Volumes/Sandbox/Buildbot/llvm/full-llvm/build/llvm.HEAD.src/test/Verifier/gcwrite-ptrptr.ll >& /dev/null child process exited abnormally === Summary === # of expected passes 3021 # of unexpected failures 6 # of expected failures 16 make[1]: *** [check-local] Error 1 make: *** [check] Error 2 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@55233 91177308-0d34-0410-b5e6-96231b3b80d8
2008-08-23 09:46:46 +00:00
case Intrinsic::gcroot:
case Intrinsic::gcwrite:
case Intrinsic::gcread:
if (ID == Intrinsic::gcroot) {
AllocaInst *AI =
dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
Assert1(isa<Constant>(CI.getArgOperand(1)),
"llvm.gcroot parameter #2 must be a constant.", &CI);
if (!AI->getType()->getElementType()->isPointerTy()) {
Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
"llvm.gcroot parameter #1 must either be a pointer alloca, "
"or argument #2 must be a non-null constant.", &CI);
}
}
Assert1(CI.getParent()->getParent()->hasGC(),
"Enclosing function does not use GC.", &CI);
break;
case Intrinsic::init_trampoline:
Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
"llvm.init_trampoline parameter #2 must resolve to a function.",
&CI);
break;
case Intrinsic::prefetch:
Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
isa<ConstantInt>(CI.getArgOperand(2)) &&
cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
"invalid arguments to llvm.prefetch",
&CI);
break;
case Intrinsic::stackprotector:
Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
"llvm.stackprotector parameter #2 must resolve to an alloca.",
&CI);
break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::invariant_start:
Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
"size argument of memory use markers must be a constant integer",
&CI);
break;
case Intrinsic::invariant_end:
Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
"llvm.invariant.end parameter #2 must be a constant integer", &CI);
break;
}
}
//===----------------------------------------------------------------------===//
// Implement the public interfaces to this file...
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
return new Verifier(action);
}
/// verifyFunction - Check a function for errors, printing messages on stderr.
/// Return true if the function is corrupt.
///
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
Function &F = const_cast<Function&>(f);
assert(!F.isDeclaration() && "Cannot verify external functions");
FunctionPassManager FPM(F.getParent());
Verifier *V = new Verifier(action);
FPM.add(V);
FPM.run(F);
return V->Broken;
}
/// verifyModule - Check a module for errors, printing messages on stderr.
/// Return true if the module is corrupt.
///
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
std::string *ErrorInfo) {
PassManager PM;
Verifier *V = new Verifier(action);
PM.add(V);
PM.run(const_cast<Module&>(M));
if (ErrorInfo && V->Broken)
*ErrorInfo = V->MessagesStr.str();
return V->Broken;
}