llvm-6502/lib/VMCore/AsmWriter.cpp

666 lines
22 KiB
C++
Raw Normal View History

//===-- Writer.cpp - Library for Printing VM assembly files ------*- C++ -*--=//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// This library uses the Analysis library to figure out offsets for
// variables in the method tables...
//
// TODO: print out the type name instead of the full type if a particular type
// is in the symbol table...
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/Writer.h"
#include "llvm/Analysis/SlotCalculator.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/GlobalVariable.h"
#include "llvm/BasicBlock.h"
#include "llvm/ConstPoolVals.h"
#include "llvm/iOther.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/Support/StringExtras.h"
#include <algorithm>
#include <map>
static const Module *getModuleFromVal(const Value *V) {
if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V))
return MA->getParent() ? MA->getParent()->getParent() : 0;
else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : 0;
else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
return M ? M->getParent() : 0;
} else if (const GlobalValue *GV =dyn_cast<const GlobalValue>(V))
return GV->getParent();
else if (const Module *Mod = dyn_cast<const Module>(V))
return Mod;
return 0;
}
static SlotCalculator *createSlotCalculator(const Value *V) {
assert(!isa<Type>(V) && "Can't create an SC for a type!");
if (const MethodArgument *MA =dyn_cast<const MethodArgument>(V)){
return new SlotCalculator(MA->getParent(), true);
} else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
return new SlotCalculator(I->getParent()->getParent(), true);
} else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
return new SlotCalculator(BB->getParent(), true);
} else if (const GlobalVariable *GV =dyn_cast<const GlobalVariable>(V)){
return new SlotCalculator(GV->getParent(), true);
} else if (const Method *Meth = dyn_cast<const Method>(V)) {
return new SlotCalculator(Meth, true);
} else if (const Module *Mod = dyn_cast<const Module>(V)) {
return new SlotCalculator(Mod, true);
}
return 0;
}
// WriteAsOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
SlotCalculator *Table) {
if (PrintName && V->hasName()) {
Out << " %" << V->getName();
} else {
if (const ConstPoolVal *CPV = dyn_cast<const ConstPoolVal>(V)) {
Out << " " << CPV->getStrValue();
} else {
int Slot;
if (Table) {
Slot = Table->getValSlot(V);
} else {
if (const Type *Ty = dyn_cast<const Type>(V)) {
Out << " " << Ty->getDescription();
return;
}
Table = createSlotCalculator(V);
if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
Slot = Table->getValSlot(V);
delete Table;
}
if (Slot >= 0) Out << " %" << Slot;
else if (PrintName)
Out << "<badref>"; // Not embeded into a location?
}
}
}
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
static void fillTypeNameTable(const Module *M,
map<const Type *, string> &TypeNames) {
if (M && M->hasSymbolTable()) {
const SymbolTable *ST = M->getSymbolTable();
SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
if (PI != ST->end()) {
SymbolTable::type_const_iterator I = PI->second.begin();
for (; I != PI->second.end(); ++I) {
// As a heuristic, don't insert pointer to primitive types, because
// they are used too often to have a single useful name.
//
const Type *Ty = cast<const Type>(I->second);
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getValueType()->isPrimitiveType())
TypeNames.insert(make_pair(Ty, "%"+I->first));
}
}
}
}
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
map<const Type *, string> &TypeNames) {
if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return I->second;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
switch (Ty->getPrimitiveID()) {
case Type::MethodTyID: {
const MethodType *MTy = cast<const MethodType>(Ty);
Result = calcTypeName(MTy->getReturnType(), TypeStack, TypeNames) + " (";
for (MethodType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
Result += ", ";
Result += calcTypeName(*I, TypeStack, TypeNames);
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<const StructType>(Ty);
Result = "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Result += ", ";
Result += calcTypeName(*I, TypeStack, TypeNames);
}
Result += " }";
break;
}
case Type::PointerTyID:
Result = calcTypeName(cast<const PointerType>(Ty)->getValueType(),
TypeStack, TypeNames) + " *";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = "[";
if (NumElements != -1) Result += itostr(NumElements) + " x ";
Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
break;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
Result = "<error>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
// printTypeInt - The internal guts of printing out a type that has a
// potentially named portion.
//
static ostream &printTypeInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
//
if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
TypeNames.insert(make_pair(Ty, TypeName)); // Cache type name for later use
return Out << TypeName;
}
// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
// type, iff there is an entry in the modules symbol table for the specified
// type or one of it's component types. This is slower than a simple x << Type;
//
ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
Out << " ";
// If they want us to print out a type, attempt to make it symbolic if there
// is a symbol table in the module...
if (M && M->hasSymbolTable()) {
map<const Type *, string> TypeNames;
fillTypeNameTable(M, TypeNames);
return printTypeInt(Out, Ty, TypeNames);
} else {
return Out << Ty->getDescription();
}
}
// WriteAsOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
bool PrintName, SlotCalculator *Table) {
if (PrintType)
WriteTypeSymbolic(Out, V->getType(), getModuleFromVal(V));
WriteAsOperandInternal(Out, V, PrintName, Table);
return Out;
}
class AssemblyWriter {
ostream &Out;
SlotCalculator &Table;
const Module *TheModule;
map<const Type *, string> TypeNames;
public:
inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M)
: Out(o), Table(Tab), TheModule(M) {
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
fillTypeNameTable(M, TypeNames);
}
inline void write(const Module *M) { printModule(M); }
inline void write(const GlobalVariable *G) { printGlobal(G); }
inline void write(const Method *M) { printMethod(M); }
inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
inline void write(const Instruction *I) { printInstruction(I); }
inline void write(const ConstPoolVal *CPV) { printConstant(CPV); }
private :
void printModule(const Module *M);
void printSymbolTable(const SymbolTable &ST);
void printConstant(const ConstPoolVal *CPV);
void printGlobal(const GlobalVariable *GV);
void printMethod(const Method *M);
void printMethodArgument(const MethodArgument *MA);
void printBasicBlock(const BasicBlock *BB);
void printInstruction(const Instruction *I);
ostream &printType(const Type *Ty);
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value *V);
};
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
bool PrintName) {
if (PrintType) { Out << " "; printType(Operand->getType()); }
WriteAsOperandInternal(Out, Operand, PrintName, &Table);
}
void AssemblyWriter::printModule(const Module *M) {
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
for_each(M->gbegin(), M->gend(),
bind_obj(this, &AssemblyWriter::printGlobal));
Out << "implementation\n";
// Output all of the methods...
for_each(M->begin(), M->end(), bind_obj(this,&AssemblyWriter::printMethod));
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->hasName()) Out << "%" << GV->getName() << " = ";
if (!GV->hasInitializer()) Out << "uninitialized ";
Out << (GV->isConstant() ? "constant " : "global ");
printType(GV->getType()->getValueType());
if (GV->hasInitializer())
writeOperand(GV->getInitializer(), false, false);
printInfoComment(GV);
Out << endl;
}
// printSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
//
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I) {
const Value *V = I->second;
if (const ConstPoolVal *CPV = dyn_cast<const ConstPoolVal>(V)) {
printConstant(CPV);
} else if (const Type *Ty = dyn_cast<const Type>(V)) {
Out << "\t%" << I->first << " = type " << Ty->getDescription() << endl;
}
}
}
}
// printConstant - Print out a constant pool entry...
//
void AssemblyWriter::printConstant(const ConstPoolVal *CPV) {
// Don't print out unnamed constants, they will be inlined
if (!CPV->hasName()) return;
// Print out name...
Out << "\t%" << CPV->getName() << " = ";
// Print out the constant type...
printType(CPV->getType());
// Write the value out now...
writeOperand(CPV, false, false);
if (!CPV->hasName() && CPV->getType() != Type::VoidTy) {
int Slot = Table.getValSlot(CPV); // Print out the def slot taken...
Out << "\t\t; <";
printType(CPV->getType()) << ">:";
if (Slot >= 0) Out << Slot;
else Out << "<badref>";
}
Out << endl;
}
// printMethod - Print all aspects of a method.
//
void AssemblyWriter::printMethod(const Method *M) {
// Print out the return type and name...
Out << "\n" << (M->isExternal() ? "declare " : "");
printType(M->getReturnType()) << " \"" << M->getName() << "\"(";
Table.incorporateMethod(M);
// Loop over the arguments, printing them...
const MethodType *MT = cast<const MethodType>(M->getMethodType());
if (!M->isExternal()) {
for_each(M->getArgumentList().begin(), M->getArgumentList().end(),
bind_obj(this, &AssemblyWriter::printMethodArgument));
} else {
// Loop over the arguments, printing them...
const MethodType *MT = cast<const MethodType>(M->getMethodType());
for (MethodType::ParamTypes::const_iterator I = MT->getParamTypes().begin(),
E = MT->getParamTypes().end(); I != E; ++I) {
if (I != MT->getParamTypes().begin()) Out << ", ";
printType(*I);
}
}
// Finish printing arguments...
if (MT->isVarArg()) {
if (MT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")\n";
if (!M->isExternal()) {
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
Out << "begin";
// Output all of its basic blocks... for the method
for_each(M->begin(), M->end(),
bind_obj(this, &AssemblyWriter::printBasicBlock));
Out << "end\n";
}
Table.purgeMethod();
}
// printMethodArgument - This member is called for every argument that
// is passed into the method. Simply print it out
//
void AssemblyWriter::printMethodArgument(const MethodArgument *Arg) {
// Insert commas as we go... the first arg doesn't get a comma
if (Arg != Arg->getParent()->getArgumentList().front()) Out << ", ";
// Output type...
printType(Arg->getType());
// Output name, if available...
if (Arg->hasName())
Out << " %" << Arg->getName();
else if (Table.getValSlot(Arg) < 0)
Out << "<badref>";
}
// printBasicBlock - This member is called for each basic block in a methd.
//
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n" << BB->getName() << ":";
} else {
int Slot = Table.getValSlot(BB);
Out << "\n; <label>:";
if (Slot >= 0)
Out << Slot; // Extra newline seperates out label's
else
Out << "<badref>";
}
Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]\n"; // Output # uses
// Output all of the instructions in the basic block...
for_each(BB->begin(), BB->end(),
bind_obj(this, &AssemblyWriter::printInstruction));
}
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
//
void AssemblyWriter::printInfoComment(const Value *V) {
if (V->getType() != Type::VoidTy) {
Out << "\t\t; <";
printType(V->getType()) << ">";
if (!V->hasName()) {
int Slot = Table.getValSlot(V); // Print out the def slot taken...
if (Slot >= 0) Out << ":" << Slot;
else Out << ":<badref>";
}
Out << "\t[#uses=" << V->use_size() << "]"; // Output # uses
}
}
// printInstruction - This member is called for each Instruction in a methd.
//
void AssemblyWriter::printInstruction(const Instruction *I) {
Out << "\t";
// Print out name if it exists...
if (I && I->hasName())
Out << "%" << I->getName() << " = ";
// Print out the opcode...
Out << I->getOpcodeName();
// Print out the type of the operands...
const Value *Operand = I->getNumOperands() ? I->getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (I->getOpcode() == Instruction::Br && I->getNumOperands() > 1) {
writeOperand(I->getOperand(2), true);
Out << ",";
writeOperand(Operand, true);
Out << ",";
writeOperand(I->getOperand(1), true);
} else if (I->getOpcode() == Instruction::Switch) {
// Special case switch statement to get formatting nice and correct...
writeOperand(Operand , true); Out << ",";
writeOperand(I->getOperand(1), true); Out << " [";
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I->getOperand(op ), true); Out << ",";
writeOperand(I->getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << " ";
printType(Operand->getType());
Out << " ["; writeOperand(Operand, false); Out << ",";
writeOperand(I->getOperand(1), false); Out << " ]";
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; op += 2) {
Out << ", [";
writeOperand(I->getOperand(op ), false); Out << ",";
writeOperand(I->getOperand(op+1), false); Out << " ]";
}
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (isa<CallInst>(I)) {
// TODO: Should try to print out short form of the Call instruction
writeOperand(Operand, true);
Out << "(";
if (I->getNumOperands() > 1) writeOperand(I->getOperand(1), true);
for (unsigned op = 2, Eop = I->getNumOperands(); op < Eop; ++op) {
Out << ",";
writeOperand(I->getOperand(op), true);
}
Out << " )";
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) {
// TODO: Should try to print out short form of the Invoke instruction
writeOperand(Operand, true);
Out << "(";
if (I->getNumOperands() > 3) writeOperand(I->getOperand(3), true);
for (unsigned op = 4, Eop = I->getNumOperands(); op < Eop; ++op) {
Out << ",";
writeOperand(I->getOperand(op), true);
}
Out << " )\n\t\t\tto";
writeOperand(II->getNormalDest(), true);
Out << " except";
writeOperand(II->getExceptionalDest(), true);
} else if (I->getOpcode() == Instruction::Malloc ||
I->getOpcode() == Instruction::Alloca) {
Out << " ";
printType(cast<const PointerType>(I->getType())->getValueType());
if (I->getNumOperands()) {
Out << ",";
writeOperand(I->getOperand(0), true);
}
} else if (isa<CastInst>(I)) {
writeOperand(Operand, true);
Out << " to ";
printType(I->getType());
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
for (unsigned i = 1, E = I->getNumOperands(); i != E; ++i) {
Operand = I->getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
// Shift Left & Right print both types even for Ubyte LHS
if (isa<ShiftInst>(I)) PrintAllTypes = true;
if (!PrintAllTypes) {
Out << " ";
printType(I->getOperand(0)->getType());
}
for (unsigned i = 0, E = I->getNumOperands(); i != E; ++i) {
if (i) Out << ",";
writeOperand(I->getOperand(i), PrintAllTypes);
}
}
printInfoComment(I);
Out << endl;
}
// printType - Go to extreme measures to attempt to print out a short, symbolic
// version of a type name.
//
ostream &AssemblyWriter::printType(const Type *Ty) {
return printTypeInt(Out, Ty, TypeNames);
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void WriteToAssembly(const Module *M, ostream &o) {
if (M == 0) { o << "<null> module\n"; return; }
SlotCalculator SlotTable(M, true);
AssemblyWriter W(o, SlotTable, M);
W.write(M);
}
void WriteToAssembly(const GlobalVariable *G, ostream &o) {
if (G == 0) { o << "<null> global variable\n"; return; }
SlotCalculator SlotTable(G->getParent(), true);
AssemblyWriter W(o, SlotTable, G->getParent());
W.write(G);
}
void WriteToAssembly(const Method *M, ostream &o) {
if (M == 0) { o << "<null> method\n"; return; }
SlotCalculator SlotTable(M->getParent(), true);
AssemblyWriter W(o, SlotTable, M->getParent());
W.write(M);
}
void WriteToAssembly(const BasicBlock *BB, ostream &o) {
if (BB == 0) { o << "<null> basic block\n"; return; }
SlotCalculator SlotTable(BB->getParent(), true);
AssemblyWriter W(o, SlotTable,
BB->getParent() ? BB->getParent()->getParent() : 0);
W.write(BB);
}
void WriteToAssembly(const ConstPoolVal *CPV, ostream &o) {
if (CPV == 0) { o << "<null> constant pool value\n"; return; }
o << " " << CPV->getType()->getDescription() << " " << CPV->getStrValue();
}
void WriteToAssembly(const Instruction *I, ostream &o) {
if (I == 0) { o << "<null> instruction\n"; return; }
const Method *M = I->getParent() ? I->getParent()->getParent() : 0;
SlotCalculator SlotTable(M, true);
AssemblyWriter W(o, SlotTable, M ? M->getParent() : 0);
W.write(I);
}