2014-03-06 16:04:00 +00:00
|
|
|
//=- AArch64ScheduleA53.td - ARM Cortex-A53 Scheduling Definitions -*- tablegen -*-=//
|
|
|
|
//
|
|
|
|
// The LLVM Compiler Infrastructure
|
|
|
|
//
|
|
|
|
// This file is distributed under the University of Illinois Open Source
|
|
|
|
// License. See LICENSE.TXT for details.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// This file defines the itinerary class data for the ARM Cortex A53 processors.
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
// ===---------------------------------------------------------------------===//
|
|
|
|
// The following definitions describe the simpler per-operand machine model.
|
|
|
|
// This works with MachineScheduler. See MCSchedModel.h for details.
|
|
|
|
|
|
|
|
// Cortex-A53 machine model for scheduling and other instruction cost heuristics.
|
|
|
|
def CortexA53Model : SchedMachineModel {
|
|
|
|
let IssueWidth = 2; // 2 micro-ops are dispatched per cycle.
|
|
|
|
let MinLatency = 1 ; // OperandCycles are interpreted as MinLatency.
|
|
|
|
let LoadLatency = 2; // Optimistic load latency assuming bypass.
|
|
|
|
// This is overriden by OperandCycles if the
|
|
|
|
// Itineraries are queried instead.
|
|
|
|
let MispredictPenalty = 9; // Based on "Cortex-A53 Software Optimisation
|
|
|
|
// Specification - Instruction Timings"
|
|
|
|
// v 1.0 Spreadsheet
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Define each kind of processor resource and number available.
|
|
|
|
|
|
|
|
// Modeling each pipeline as a ProcResource using the default BufferSize = -1.
|
|
|
|
// Cortex-A53 is in-order and therefore should be using BufferSize = 0. The
|
|
|
|
// current configuration performs better with the basic latencies provided so
|
|
|
|
// far. Will revisit BufferSize once the latency information is more accurate.
|
|
|
|
|
|
|
|
let SchedModel = CortexA53Model in {
|
|
|
|
|
|
|
|
def A53UnitALU : ProcResource<2>; // Int ALU
|
|
|
|
def A53UnitMAC : ProcResource<1>; // Int MAC
|
|
|
|
def A53UnitDiv : ProcResource<1>; // Int Division
|
|
|
|
def A53UnitLdSt : ProcResource<1>; // Load/Store
|
|
|
|
def A53UnitB : ProcResource<1>; // Branch
|
|
|
|
def A53UnitFPALU : ProcResource<1>; // FP ALU
|
|
|
|
def A53UnitFPMDS : ProcResource<1>; // FP Mult/Div/Sqrt
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Subtarget-specific SchedWrite types which both map the ProcResources and
|
|
|
|
// set the latency.
|
|
|
|
|
|
|
|
// Issue - Every instruction must consume an A53WriteIssue. Optionally,
|
|
|
|
// instructions that cannot be dual-issued will also include the
|
|
|
|
// A53WriteIssue2nd in their SchedRW list. That second WriteRes will
|
|
|
|
// ensure that a second issue slot is consumed.
|
|
|
|
def A53WriteIssue : SchedWriteRes<[]>;
|
|
|
|
def A53WriteIssue2nd : SchedWriteRes<[]> { let Latency = 0; }
|
|
|
|
|
|
|
|
// ALU - These are reduced to 1 despite a true latency of 4 in order to easily
|
|
|
|
// model forwarding logic. Once forwarding is properly modelled, then
|
|
|
|
// they'll be corrected.
|
|
|
|
def : WriteRes<WriteALU, [A53UnitALU]> { let Latency = 1; }
|
|
|
|
def : WriteRes<WriteALUs, [A53UnitALU]> { let Latency = 1; }
|
|
|
|
def : WriteRes<WriteCMP, [A53UnitALU]> { let Latency = 1; }
|
|
|
|
|
|
|
|
// MAC
|
|
|
|
def : WriteRes<WriteMAC, [A53UnitMAC]> { let Latency = 4; }
|
|
|
|
|
|
|
|
// Div
|
|
|
|
def : WriteRes<WriteDiv, [A53UnitDiv]> { let Latency = 4; }
|
|
|
|
|
2014-03-21 19:34:41 +00:00
|
|
|
// Load - Note: Vector loads take 1-5 cycles to issue. For the WriteVecLd below,
|
|
|
|
// choosing the median of 3 which makes the latency 6. May model this more
|
|
|
|
// carefully in the future.
|
2014-03-06 16:04:00 +00:00
|
|
|
def : WriteRes<WriteLd, [A53UnitLdSt]> { let Latency = 4; }
|
|
|
|
def : WriteRes<WritePreLd, [A53UnitLdSt]> { let Latency = 4; }
|
2014-03-21 19:34:41 +00:00
|
|
|
def : WriteRes<WriteVecLd, [A53UnitLdSt]> { let Latency = 6; }
|
|
|
|
|
|
|
|
// Store - Note: Vector stores take 1-3 cycles to issue. For the ReadVecSt below,
|
|
|
|
// choosing the median of 2 which makes the latency 5. May model this more
|
|
|
|
// carefully in the future.
|
|
|
|
def : WriteRes<WriteSt, [A53UnitLdSt]> { let Latency = 4; }
|
|
|
|
def : WriteRes<WriteVecSt, [A53UnitLdSt]> { let Latency = 5; }
|
2014-03-06 16:04:00 +00:00
|
|
|
|
|
|
|
// Branch
|
|
|
|
def : WriteRes<WriteBr, [A53UnitB]>;
|
|
|
|
def : WriteRes<WriteBrL, [A53UnitB]>;
|
|
|
|
|
|
|
|
// FP ALU
|
|
|
|
def : WriteRes<WriteFPALU, [A53UnitFPALU]> {let Latency = 6; }
|
|
|
|
|
|
|
|
// FP MAC, Mul, Div, Sqrt
|
|
|
|
// Using Double Precision numbers for now as a worst case. Additionally, not
|
|
|
|
// modeling the exact hazard but instead treating the whole pipe as a hazard.
|
|
|
|
// As an example VMUL, VMLA, and others are actually pipelined. VDIV and VSQRT
|
|
|
|
// have a total latency of 33 and 32 respectively but only a hazard of 29 and
|
|
|
|
// 28 (double-prescion example).
|
|
|
|
def : WriteRes<WriteFPMAC, [A53UnitFPMDS]> { let Latency = 10; }
|
|
|
|
def : WriteRes<WriteFPMul, [A53UnitFPMDS]> { let Latency = 6; }
|
|
|
|
def : WriteRes<WriteFPDiv, [A53UnitFPMDS]> { let Latency = 33;
|
|
|
|
let ResourceCycles = [29]; }
|
|
|
|
def : WriteRes<WriteFPSqrt, [A53UnitFPMDS]> { let Latency = 32;
|
|
|
|
let ResourceCycles = [28]; }
|
|
|
|
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Subtarget-specific SchedRead types.
|
|
|
|
|
|
|
|
// No forwarding defined for ReadALU yet.
|
|
|
|
def : ReadAdvance<ReadALU, 0>;
|
|
|
|
|
|
|
|
// No forwarding defined for ReadCMP yet.
|
|
|
|
def : ReadAdvance<ReadCMP, 0>;
|
|
|
|
|
|
|
|
// No forwarding defined for ReadBr yet.
|
|
|
|
def : ReadAdvance<ReadBr, 0>;
|
|
|
|
|
|
|
|
// No forwarding defined for ReadMAC yet.
|
|
|
|
def : ReadAdvance<ReadMAC, 0>;
|
|
|
|
|
|
|
|
// No forwarding defined for ReadDiv yet.
|
|
|
|
def : ReadAdvance<ReadDiv, 0>;
|
|
|
|
|
2014-03-21 19:34:41 +00:00
|
|
|
// No forwarding defined for ReadLd, ReadPreLd, ReadVecLd yet.
|
2014-03-06 16:04:00 +00:00
|
|
|
def : ReadAdvance<ReadLd, 0>;
|
|
|
|
def : ReadAdvance<ReadPreLd, 0>;
|
2014-03-21 19:34:41 +00:00
|
|
|
def : ReadAdvance<ReadVecLd, 0>;
|
|
|
|
|
|
|
|
// No forwarding defined for ReadSt and ReadVecSt yet.
|
|
|
|
def : ReadAdvance<ReadSt, 0>;
|
|
|
|
def : ReadAdvance<ReadVecSt, 0>;
|
2014-03-06 16:04:00 +00:00
|
|
|
|
|
|
|
// No forwarding defined for ReadFPALU yet.
|
|
|
|
def : ReadAdvance<ReadFPALU, 0>;
|
|
|
|
|
|
|
|
// No forwarding defined for ReadFPMAC/Mul/Div/Sqrt yet.
|
|
|
|
def : ReadAdvance<ReadFPMAC, 0>;
|
|
|
|
def : ReadAdvance<ReadFPMul, 0>;
|
|
|
|
def : ReadAdvance<ReadFPDiv, 0>;
|
|
|
|
def : ReadAdvance<ReadFPSqrt, 0>;
|
|
|
|
|
|
|
|
}
|