llvm-6502/lib/Target/X86/X86InstrFPStack.td

478 lines
24 KiB
TableGen
Raw Normal View History

//==- X86InstrFPStack.td - Describe the X86 Instruction Set -------*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the Evan Cheng and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 x87 FPU instruction set, defining the
// instructions, and properties of the instructions which are needed for code
// generation, machine code emission, and analysis.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// FPStack specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTX86FpGet : SDTypeProfile<1, 0, [SDTCisVT<0, f64>]>;
def SDTX86FpSet : SDTypeProfile<0, 1, [SDTCisFP<0>]>;
def SDTX86Fld : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>;
def SDTX86Fst : SDTypeProfile<0, 3, [SDTCisFP<0>,
SDTCisPtrTy<1>, SDTCisVT<2, OtherVT>]>;
def SDTX86Fild : SDTypeProfile<1, 2, [SDTCisVT<0, f64>, SDTCisPtrTy<1>,
SDTCisVT<2, OtherVT>]>;
def SDTX86FpToIMem: SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisPtrTy<1>]>;
def X86fpget : SDNode<"X86ISD::FP_GET_RESULT", SDTX86FpGet,
[SDNPHasChain, SDNPInFlag, SDNPOutFlag]>;
def X86fpset : SDNode<"X86ISD::FP_SET_RESULT", SDTX86FpSet,
[SDNPHasChain, SDNPOutFlag]>;
def X86fld : SDNode<"X86ISD::FLD", SDTX86Fld,
[SDNPHasChain]>;
def X86fst : SDNode<"X86ISD::FST", SDTX86Fst,
[SDNPHasChain, SDNPInFlag]>;
def X86fild : SDNode<"X86ISD::FILD", SDTX86Fild,
[SDNPHasChain]>;
def X86fildflag: SDNode<"X86ISD::FILD_FLAG",SDTX86Fild,
[SDNPHasChain, SDNPOutFlag]>;
def X86fp_to_i16mem : SDNode<"X86ISD::FP_TO_INT16_IN_MEM", SDTX86FpToIMem,
[SDNPHasChain]>;
def X86fp_to_i32mem : SDNode<"X86ISD::FP_TO_INT32_IN_MEM", SDTX86FpToIMem,
[SDNPHasChain]>;
def X86fp_to_i64mem : SDNode<"X86ISD::FP_TO_INT64_IN_MEM", SDTX86FpToIMem,
[SDNPHasChain]>;
//===----------------------------------------------------------------------===//
// FPStack pattern fragments
//===----------------------------------------------------------------------===//
def fp64imm0 : PatLeaf<(f64 fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
def fp64immneg0 : PatLeaf<(f64 fpimm), [{
return N->isExactlyValue(-0.0);
}]>;
def fp64imm1 : PatLeaf<(f64 fpimm), [{
return N->isExactlyValue(+1.0);
}]>;
def fp64immneg1 : PatLeaf<(f64 fpimm), [{
return N->isExactlyValue(-1.0);
}]>;
def extloadf64f32 : PatFrag<(ops node:$ptr), (f64 (extloadf32 node:$ptr))>;
// Some 'special' instructions
let usesCustomDAGSchedInserter = 1 in { // Expanded by the scheduler.
def FP_TO_INT16_IN_MEM : I<0, Pseudo,
(ops i16mem:$dst, RFP:$src),
"#FP_TO_INT16_IN_MEM PSEUDO!",
[(X86fp_to_i16mem RFP:$src, addr:$dst)]>;
def FP_TO_INT32_IN_MEM : I<0, Pseudo,
(ops i32mem:$dst, RFP:$src),
"#FP_TO_INT32_IN_MEM PSEUDO!",
[(X86fp_to_i32mem RFP:$src, addr:$dst)]>;
def FP_TO_INT64_IN_MEM : I<0, Pseudo,
(ops i64mem:$dst, RFP:$src),
"#FP_TO_INT64_IN_MEM PSEUDO!",
[(X86fp_to_i64mem RFP:$src, addr:$dst)]>;
}
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL", []>;
// All FP Stack operations are represented with two instructions here. The
// first instruction, generated by the instruction selector, uses "RFP"
// registers: a traditional register file to reference floating point values.
// These instructions are all psuedo instructions and use the "Fp" prefix.
// The second instruction is defined with FPI, which is the actual instruction
// emitted by the assembler. The FP stackifier pass converts one to the other
// after register allocation occurs.
//
// Note that the FpI instruction should have instruction selection info (e.g.
// a pattern) and the FPI instruction should have emission info (e.g. opcode
// encoding and asm printing info).
// FPI - Floating Point Instruction template.
class FPI<bits<8> o, Format F, dag ops, string asm> : I<o, F, ops, asm, []> {}
// FpI_ - Floating Point Psuedo Instruction template. Not Predicated.
class FpI_<dag ops, FPFormat fp, list<dag> pattern>
: X86Inst<0, Pseudo, NoImm, ops, ""> {
let FPForm = fp; let FPFormBits = FPForm.Value;
let Pattern = pattern;
}
// Random Pseudo Instructions.
def FpGETRESULT : FpI_<(ops RFP:$dst), SpecialFP,
[(set RFP:$dst, X86fpget)]>; // FPR = ST(0)
let noResults = 1 in
def FpSETRESULT : FpI_<(ops RFP:$src), SpecialFP,
[(X86fpset RFP:$src)]>, Imp<[], [ST0]>; // ST(0) = FPR
// FpI - Floating Point Psuedo Instruction template. Predicated on FPStack.
class FpI<dag ops, FPFormat fp, list<dag> pattern> :
FpI_<ops, fp, pattern>, Requires<[FPStack]>;
def FpMOV : FpI<(ops RFP:$dst, RFP:$src), SpecialFP, []>; // f1 = fmov f2
// Arithmetic
// Add, Sub, Mul, Div.
def FpADD : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fadd RFP:$src1, RFP:$src2))]>;
def FpSUB : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fsub RFP:$src1, RFP:$src2))]>;
def FpMUL : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fmul RFP:$src1, RFP:$src2))]>;
def FpDIV : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), TwoArgFP,
[(set RFP:$dst, (fdiv RFP:$src1, RFP:$src2))]>;
class FPST0rInst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (ops RST:$op), asm>, D8;
class FPrST0Inst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (ops RST:$op), asm>, DC;
class FPrST0PInst<bits<8> o, string asm>
: FPI<o, AddRegFrm, (ops RST:$op), asm>, DE;
// Binary Ops with a memory source.
def FpADD32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fadd RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) + [mem32]
def FpADD64m : FpI<(ops RFP:$dst, RFP:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fadd RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) + [mem64]
def FpMUL32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fmul RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) * [mem32]
def FpMUL64m : FpI<(ops RFP:$dst, RFP:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fmul RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) * [mem64]
def FpSUB32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) - [mem32]
def FpSUB64m : FpI<(ops RFP:$dst, RFP:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) - [mem64]
def FpSUBR32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub (extloadf64f32 addr:$src2),
RFP:$src1))]>;
// ST(0) = [mem32] - ST(0)
def FpSUBR64m : FpI<(ops RFP:$dst, RFP:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub (loadf64 addr:$src2), RFP:$src1))]>;
// ST(0) = [mem64] - ST(0)
def FpDIV32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv RFP:$src1,
(extloadf64f32 addr:$src2)))]>;
// ST(0) = ST(0) / [mem32]
def FpDIV64m : FpI<(ops RFP:$dst, RFP:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv RFP:$src1, (loadf64 addr:$src2)))]>;
// ST(0) = ST(0) / [mem64]
def FpDIVR32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv (extloadf64f32 addr:$src2),
RFP:$src1))]>;
// ST(0) = [mem32] / ST(0)
def FpDIVR64m : FpI<(ops RFP:$dst, RFP:$src1, f64mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv (loadf64 addr:$src2), RFP:$src1))]>;
// ST(0) = [mem64] / ST(0)
def FADD32m : FPI<0xD8, MRM0m, (ops f32mem:$src), "fadd{s} $src">;
def FADD64m : FPI<0xDC, MRM0m, (ops f64mem:$src), "fadd{l} $src">;
def FMUL32m : FPI<0xD8, MRM1m, (ops f32mem:$src), "fmul{s} $src">;
def FMUL64m : FPI<0xDC, MRM1m, (ops f64mem:$src), "fmul{l} $src">;
def FSUB32m : FPI<0xD8, MRM4m, (ops f32mem:$src), "fsub{s} $src">;
def FSUB64m : FPI<0xDC, MRM4m, (ops f64mem:$src), "fsub{l} $src">;
def FSUBR32m : FPI<0xD8, MRM5m, (ops f32mem:$src), "fsubr{s} $src">;
def FSUBR64m : FPI<0xDC, MRM5m, (ops f64mem:$src), "fsubr{l} $src">;
def FDIV32m : FPI<0xD8, MRM6m, (ops f32mem:$src), "fdiv{s} $src">;
def FDIV64m : FPI<0xDC, MRM6m, (ops f64mem:$src), "fdiv{l} $src">;
def FDIVR32m : FPI<0xD8, MRM7m, (ops f32mem:$src), "fdivr{s} $src">;
def FDIVR64m : FPI<0xDC, MRM7m, (ops f64mem:$src), "fdivr{l} $src">;
def FpIADD16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fadd RFP:$src1,
(X86fild addr:$src2, i16)))]>;
// ST(0) = ST(0) + [mem16int]
def FpIADD32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fadd RFP:$src1,
(X86fild addr:$src2, i32)))]>;
// ST(0) = ST(0) + [mem32int]
def FpIMUL16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fmul RFP:$src1,
(X86fild addr:$src2, i16)))]>;
// ST(0) = ST(0) * [mem16int]
def FpIMUL32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fmul RFP:$src1,
(X86fild addr:$src2, i32)))]>;
// ST(0) = ST(0) * [mem32int]
def FpISUB16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub RFP:$src1,
(X86fild addr:$src2, i16)))]>;
// ST(0) = ST(0) - [mem16int]
def FpISUB32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub RFP:$src1,
(X86fild addr:$src2, i32)))]>;
// ST(0) = ST(0) - [mem32int]
def FpISUBR16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub (X86fild addr:$src2, i16),
RFP:$src1))]>;
// ST(0) = [mem16int] - ST(0)
def FpISUBR32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fsub (X86fild addr:$src2, i32),
RFP:$src1))]>;
// ST(0) = [mem32int] - ST(0)
def FpIDIV16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv RFP:$src1,
(X86fild addr:$src2, i16)))]>;
// ST(0) = ST(0) / [mem16int]
def FpIDIV32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv RFP:$src1,
(X86fild addr:$src2, i32)))]>;
// ST(0) = ST(0) / [mem32int]
def FpIDIVR16m : FpI<(ops RFP:$dst, RFP:$src1, i16mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv (X86fild addr:$src2, i16),
RFP:$src1))]>;
// ST(0) = [mem16int] / ST(0)
def FpIDIVR32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
[(set RFP:$dst, (fdiv (X86fild addr:$src2, i32),
RFP:$src1))]>;
// ST(0) = [mem32int] / ST(0)
def FIADD16m : FPI<0xDE, MRM0m, (ops i16mem:$src), "fiadd{s} $src">;
def FIADD32m : FPI<0xDA, MRM0m, (ops i32mem:$src), "fiadd{l} $src">;
def FIMUL16m : FPI<0xDE, MRM1m, (ops i16mem:$src), "fimul{s} $src">;
def FIMUL32m : FPI<0xDA, MRM1m, (ops i32mem:$src), "fimul{l} $src">;
def FISUB16m : FPI<0xDE, MRM4m, (ops i16mem:$src), "fisub{s} $src">;
def FISUB32m : FPI<0xDA, MRM4m, (ops i32mem:$src), "fisub{l} $src">;
def FISUBR16m : FPI<0xDE, MRM5m, (ops i16mem:$src), "fisubr{s} $src">;
def FISUBR32m : FPI<0xDA, MRM5m, (ops i32mem:$src), "fisubr{l} $src">;
def FIDIV16m : FPI<0xDE, MRM6m, (ops i16mem:$src), "fidiv{s} $src">;
def FIDIV32m : FPI<0xDA, MRM6m, (ops i32mem:$src), "fidiv{l} $src">;
def FIDIVR16m : FPI<0xDE, MRM7m, (ops i16mem:$src), "fidivr{s} $src">;
def FIDIVR32m : FPI<0xDA, MRM7m, (ops i32mem:$src), "fidivr{l} $src">;
// NOTE: GAS and apparently all other AT&T style assemblers have a broken notion
// of some of the 'reverse' forms of the fsub and fdiv instructions. As such,
// we have to put some 'r's in and take them out of weird places.
def FADDST0r : FPST0rInst <0xC0, "fadd $op">;
def FADDrST0 : FPrST0Inst <0xC0, "fadd {%st(0), $op|$op, %ST(0)}">;
def FADDPrST0 : FPrST0PInst<0xC0, "faddp $op">;
def FSUBRST0r : FPST0rInst <0xE8, "fsubr $op">;
def FSUBrST0 : FPrST0Inst <0xE8, "fsub{r} {%st(0), $op|$op, %ST(0)}">;
def FSUBPrST0 : FPrST0PInst<0xE8, "fsub{r}p $op">;
def FSUBST0r : FPST0rInst <0xE0, "fsub $op">;
def FSUBRrST0 : FPrST0Inst <0xE0, "fsub{|r} {%st(0), $op|$op, %ST(0)}">;
def FSUBRPrST0 : FPrST0PInst<0xE0, "fsub{|r}p $op">;
def FMULST0r : FPST0rInst <0xC8, "fmul $op">;
def FMULrST0 : FPrST0Inst <0xC8, "fmul {%st(0), $op|$op, %ST(0)}">;
def FMULPrST0 : FPrST0PInst<0xC8, "fmulp $op">;
def FDIVRST0r : FPST0rInst <0xF8, "fdivr $op">;
def FDIVrST0 : FPrST0Inst <0xF8, "fdiv{r} {%st(0), $op|$op, %ST(0)}">;
def FDIVPrST0 : FPrST0PInst<0xF8, "fdiv{r}p $op">;
def FDIVST0r : FPST0rInst <0xF0, "fdiv $op">;
def FDIVRrST0 : FPrST0Inst <0xF0, "fdiv{|r} {%st(0), $op|$op, %ST(0)}">;
def FDIVRPrST0 : FPrST0PInst<0xF0, "fdiv{|r}p $op">;
// Unary operations.
def FpCHS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fneg RFP:$src))]>;
def FpABS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fabs RFP:$src))]>;
def FpSQRT : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fsqrt RFP:$src))]>;
def FpSIN : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fsin RFP:$src))]>;
def FpCOS : FpI<(ops RFP:$dst, RFP:$src), OneArgFPRW,
[(set RFP:$dst, (fcos RFP:$src))]>;
def FpTST : FpI<(ops RFP:$src), OneArgFP,
[]>;
def FCHS : FPI<0xE0, RawFrm, (ops), "fchs">, D9;
def FABS : FPI<0xE1, RawFrm, (ops), "fabs">, D9;
def FSQRT : FPI<0xFA, RawFrm, (ops), "fsqrt">, D9;
def FSIN : FPI<0xFE, RawFrm, (ops), "fsin">, D9;
def FCOS : FPI<0xFF, RawFrm, (ops), "fcos">, D9;
def FTST : FPI<0xE4, RawFrm, (ops), "ftst">, D9;
// Floating point cmovs.
let isTwoAddress = 1 in {
def FpCMOVB : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_B))]>;
def FpCMOVBE : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_BE))]>;
def FpCMOVE : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_E))]>;
def FpCMOVP : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_P))]>;
def FpCMOVNB : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_AE))]>;
def FpCMOVNBE: FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_A))]>;
def FpCMOVNE : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_NE))]>;
def FpCMOVNP : FpI<(ops RFP:$dst, RFP:$src1, RFP:$src2), CondMovFP,
[(set RFP:$dst, (X86cmov RFP:$src1, RFP:$src2,
X86_COND_NP))]>;
}
def FCMOVB : FPI<0xC0, AddRegFrm, (ops RST:$op),
"fcmovb {$op, %st(0)|%ST(0), $op}">, DA;
def FCMOVBE : FPI<0xD0, AddRegFrm, (ops RST:$op),
"fcmovbe {$op, %st(0)|%ST(0), $op}">, DA;
def FCMOVE : FPI<0xC8, AddRegFrm, (ops RST:$op),
"fcmove {$op, %st(0)|%ST(0), $op}">, DA;
def FCMOVP : FPI<0xD8, AddRegFrm, (ops RST:$op),
"fcmovu {$op, %st(0)|%ST(0), $op}">, DA;
def FCMOVNB : FPI<0xC0, AddRegFrm, (ops RST:$op),
"fcmovnb {$op, %st(0)|%ST(0), $op}">, DB;
def FCMOVNBE : FPI<0xD0, AddRegFrm, (ops RST:$op),
"fcmovnbe {$op, %st(0)|%ST(0), $op}">, DB;
def FCMOVNE : FPI<0xC8, AddRegFrm, (ops RST:$op),
"fcmovne {$op, %st(0)|%ST(0), $op}">, DB;
def FCMOVNP : FPI<0xD8, AddRegFrm, (ops RST:$op),
"fcmovnu {$op, %st(0)|%ST(0), $op}">, DB;
// Floating point loads & stores.
def FpLD32m : FpI<(ops RFP:$dst, f32mem:$src), ZeroArgFP,
[(set RFP:$dst, (extloadf64f32 addr:$src))]>;
def FpLD64m : FpI<(ops RFP:$dst, f64mem:$src), ZeroArgFP,
[(set RFP:$dst, (loadf64 addr:$src))]>;
def FpILD16m : FpI<(ops RFP:$dst, i16mem:$src), ZeroArgFP,
[(set RFP:$dst, (X86fild addr:$src, i16))]>;
def FpILD32m : FpI<(ops RFP:$dst, i32mem:$src), ZeroArgFP,
[(set RFP:$dst, (X86fild addr:$src, i32))]>;
def FpILD64m : FpI<(ops RFP:$dst, i64mem:$src), ZeroArgFP,
[(set RFP:$dst, (X86fild addr:$src, i64))]>;
def FpST32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP,
[(truncstoref32 RFP:$src, addr:$op)]>;
def FpST64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP,
[(store RFP:$src, addr:$op)]>;
def FpSTP32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP, []>;
def FpSTP64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP, []>;
def FpIST16m : FpI<(ops i16mem:$op, RFP:$src), OneArgFP, []>;
def FpIST32m : FpI<(ops i32mem:$op, RFP:$src), OneArgFP, []>;
def FpIST64m : FpI<(ops i64mem:$op, RFP:$src), OneArgFP, []>;
def FLD32m : FPI<0xD9, MRM0m, (ops f32mem:$src), "fld{s} $src">;
def FLD64m : FPI<0xDD, MRM0m, (ops f64mem:$src), "fld{l} $src">;
def FILD16m : FPI<0xDF, MRM0m, (ops i16mem:$src), "fild{s} $src">;
def FILD32m : FPI<0xDB, MRM0m, (ops i32mem:$src), "fild{l} $src">;
def FILD64m : FPI<0xDF, MRM5m, (ops i64mem:$src), "fild{ll} $src">;
def FST32m : FPI<0xD9, MRM2m, (ops f32mem:$dst), "fst{s} $dst">;
def FST64m : FPI<0xDD, MRM2m, (ops f64mem:$dst), "fst{l} $dst">;
def FSTP32m : FPI<0xD9, MRM3m, (ops f32mem:$dst), "fstp{s} $dst">;
def FSTP64m : FPI<0xDD, MRM3m, (ops f64mem:$dst), "fstp{l} $dst">;
def FIST16m : FPI<0xDF, MRM2m, (ops i16mem:$dst), "fist{s} $dst">;
def FIST32m : FPI<0xDB, MRM2m, (ops i32mem:$dst), "fist{l} $dst">;
def FISTP16m : FPI<0xDF, MRM3m, (ops i16mem:$dst), "fistp{s} $dst">;
def FISTP32m : FPI<0xDB, MRM3m, (ops i32mem:$dst), "fistp{l} $dst">;
def FISTP64m : FPI<0xDF, MRM7m, (ops i64mem:$dst), "fistp{ll} $dst">;
// FISTTP requires SSE3 even though it's a FPStack op.
def FpISTT16m : FpI_<(ops i16mem:$op, RFP:$src), OneArgFP,
[(X86fp_to_i16mem RFP:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def FpISTT32m : FpI_<(ops i32mem:$op, RFP:$src), OneArgFP,
[(X86fp_to_i32mem RFP:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def FpISTT64m : FpI_<(ops i64mem:$op, RFP:$src), OneArgFP,
[(X86fp_to_i64mem RFP:$src, addr:$op)]>,
Requires<[HasSSE3]>;
def FISTTP16m : FPI<0xDF, MRM1m, (ops i16mem:$dst), "fisttp{s} $dst">;
def FISTTP32m : FPI<0xDB, MRM1m, (ops i32mem:$dst), "fisttp{l} $dst">;
def FISTTP64m : FPI<0xDD, MRM1m, (ops i64mem:$dst), "fisttp{ll} $dst">;
// FP Stack manipulation instructions.
def FLDrr : FPI<0xC0, AddRegFrm, (ops RST:$op), "fld $op">, D9;
def FSTrr : FPI<0xD0, AddRegFrm, (ops RST:$op), "fst $op">, DD;
def FSTPrr : FPI<0xD8, AddRegFrm, (ops RST:$op), "fstp $op">, DD;
def FXCH : FPI<0xC8, AddRegFrm, (ops RST:$op), "fxch $op">, D9;
// Floating point constant loads.
let isReMaterializable = 1 in {
def FpLD0 : FpI<(ops RFP:$dst), ZeroArgFP,
[(set RFP:$dst, fp64imm0)]>;
def FpLD1 : FpI<(ops RFP:$dst), ZeroArgFP,
[(set RFP:$dst, fp64imm1)]>;
}
def FLD0 : FPI<0xEE, RawFrm, (ops), "fldz">, D9;
def FLD1 : FPI<0xE8, RawFrm, (ops), "fld1">, D9;
// Floating point compares.
def FpUCOMr : FpI<(ops RFP:$lhs, RFP:$rhs), CompareFP,
[]>; // FPSW = cmp ST(0) with ST(i)
def FpUCOMIr : FpI<(ops RFP:$lhs, RFP:$rhs), CompareFP,
[(X86cmp RFP:$lhs, RFP:$rhs)]>; // CC = cmp ST(0) with ST(i)
def FUCOMr : FPI<0xE0, AddRegFrm, // FPSW = cmp ST(0) with ST(i)
(ops RST:$reg),
"fucom $reg">, DD, Imp<[ST0],[]>;
def FUCOMPr : FPI<0xE8, AddRegFrm, // FPSW = cmp ST(0) with ST(i), pop
(ops RST:$reg),
"fucomp $reg">, DD, Imp<[ST0],[]>;
def FUCOMPPr : FPI<0xE9, RawFrm, // cmp ST(0) with ST(1), pop, pop
(ops),
"fucompp">, DA, Imp<[ST0],[]>;
def FUCOMIr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i)
(ops RST:$reg),
"fucomi {$reg, %st(0)|%ST(0), $reg}">, DB, Imp<[ST0],[]>;
def FUCOMIPr : FPI<0xE8, AddRegFrm, // CC = cmp ST(0) with ST(i), pop
(ops RST:$reg),
"fucomip {$reg, %st(0)|%ST(0), $reg}">, DF, Imp<[ST0],[]>;
// Floating point flag ops.
def FNSTSW8r : I<0xE0, RawFrm, // AX = fp flags
(ops), "fnstsw", []>, DF, Imp<[],[AX]>;
def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world
(ops i16mem:$dst), "fnstcw $dst", []>;
def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16]
(ops i16mem:$dst), "fldcw $dst", []>;
//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//
// Required for RET of f32 / f64 values.
def : Pat<(X86fld addr:$src, f32), (FpLD32m addr:$src)>;
def : Pat<(X86fld addr:$src, f64), (FpLD64m addr:$src)>;
// Required for CALL which return f32 / f64 values.
def : Pat<(X86fst RFP:$src, addr:$op, f32), (FpST32m addr:$op, RFP:$src)>;
def : Pat<(X86fst RFP:$src, addr:$op, f64), (FpST64m addr:$op, RFP:$src)>;
// Floating point constant -0.0 and -1.0
def : Pat<(f64 fp64immneg0), (FpCHS (FpLD0))>, Requires<[FPStack]>;
def : Pat<(f64 fp64immneg1), (FpCHS (FpLD1))>, Requires<[FPStack]>;
// Used to conv. i64 to f64 since there isn't a SSE version.
def : Pat<(X86fildflag addr:$src, i64), (FpILD64m addr:$src)>;