llvm-6502/lib/Target/SparcV9/LiveVar/BBLiveVar.cpp

250 lines
8.3 KiB
C++
Raw Normal View History

//===-- BBLiveVar.cpp - Live Variable Analysis for a BasicBlock -----------===//
//
// This is a wrapper class for BasicBlock which is used by live var analysis.
//
//===----------------------------------------------------------------------===//
#include "BBLiveVar.h"
#include "llvm/Analysis/LiveVar/MethodLiveVarInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/BasicBlock.h"
#include "llvm/Support/CFG.h"
#include "Support/SetOperations.h"
#include <iostream>
/// BROKEN: Should not include sparc stuff directly into here
#include "../../Target/Sparc/SparcInternals.h" // Only for PHI defn
using std::cerr;
static AnnotationID AID(AnnotationManager::getID("Analysis::BBLiveVar"));
BBLiveVar *BBLiveVar::CreateOnBB(const BasicBlock *BB, unsigned POID) {
BBLiveVar *Result = new BBLiveVar(BB, POID);
BB->addAnnotation(Result);
return Result;
}
BBLiveVar *BBLiveVar::GetFromBB(const BasicBlock *BB) {
return (BBLiveVar*)BB->getAnnotation(AID);
}
void BBLiveVar::RemoveFromBB(const BasicBlock *BB) {
bool Deleted = BB->deleteAnnotation(AID);
assert(Deleted && "BBLiveVar annotation did not exist!");
}
BBLiveVar::BBLiveVar(const BasicBlock *bb, unsigned id)
: Annotation(AID), BB(bb), POID(id) {
InSetChanged = OutSetChanged = false;
calcDefUseSets();
}
//-----------------------------------------------------------------------------
// calculates def and use sets for each BB
// There are two passes over operands of a machine instruction. This is
// because, we can have instructions like V = V + 1, since we no longer
// assume single definition.
//-----------------------------------------------------------------------------
void BBLiveVar::calcDefUseSets() {
// get the iterator for machine instructions
const MachineCodeForBasicBlock &MIVec = BB->getMachineInstrVec();
// iterate over all the machine instructions in BB
for (MachineCodeForBasicBlock::const_reverse_iterator MII = MIVec.rbegin(),
MIE = MIVec.rend(); MII != MIE; ++MII) {
const MachineInstr *MI = *MII;
if (DEBUG_LV >= LV_DEBUG_Verbose) { // debug msg
cerr << " *Iterating over machine instr ";
MI->dump();
cerr << "\n";
}
// iterate over MI operands to find defs
for (MachineInstr::const_val_op_iterator OpI = MI->begin(), OpE = MI->end();
OpI != OpE; ++OpI)
if (OpI.isDef()) // add to Defs only if this operand is a def
addDef(*OpI);
// do for implicit operands as well
for (unsigned i = 0; i < MI->getNumImplicitRefs(); ++i)
if (MI->implicitRefIsDefined(i))
addDef(MI->getImplicitRef(i));
// iterate over MI operands to find uses
for (MachineInstr::const_val_op_iterator OpI = MI->begin(), OpE = MI->end();
OpI != OpE; ++OpI) {
const Value *Op = *OpI;
if (isa<BasicBlock>(Op))
continue; // don't process labels
if (!OpI.isDef()) { // add to Uses only if this operand is a use
//
// *** WARNING: The following code for handling dummy PHI machine
// instructions is untested. The previous code was broken and I
// fixed it, but it turned out to be unused as long as Phi elimination
// is performed during instruction selection.
//
// Put Phi operands in UseSet for the incoming edge, not node.
// They must not "hide" later defs, and must be handled specially
// during set propagation over the CFG.
if (MI->getOpCode() == PHI) { // for a phi node
const Value *ArgVal = Op;
const BasicBlock *PredBB = cast<BasicBlock>(*++OpI); // next ptr is BB
PredToEdgeInSetMap[PredBB].insert(ArgVal);
if (DEBUG_LV >= LV_DEBUG_Verbose)
cerr << " - phi operand " << RAV(ArgVal) << " came from BB "
<< RAV(PredBB) << endl;
} // if( IsPhi )
else {
// It is not a Phi use: add to regular use set and remove later defs.
addUse(Op);
}
} // if a use
} // for all operands
// do for implicit operands as well
for (unsigned i = 0; i < MI->getNumImplicitRefs(); ++i) {
assert(MI->getOpCode() != PHI && "Phi cannot have implicit opeands");
const Value *Op = MI->getImplicitRef(i);
if (Op->getType()->isLabelType()) // don't process labels
continue;
if (!MI->implicitRefIsDefined(i))
addUse(Op);
}
} // for all machine instructions
}
//-----------------------------------------------------------------------------
// To add an operand which is a def
//-----------------------------------------------------------------------------
void BBLiveVar::addDef(const Value *Op) {
DefSet.insert(Op); // operand is a def - so add to def set
InSet.erase(Op); // this definition kills any later uses
InSetChanged = true;
if (DEBUG_LV >= LV_DEBUG_Verbose) cerr << " +Def: " << RAV(Op) << "\n";
}
//-----------------------------------------------------------------------------
// To add an operand which is a use
//-----------------------------------------------------------------------------
void BBLiveVar::addUse(const Value *Op) {
InSet.insert(Op); // An operand is a use - so add to use set
DefSet.erase(Op); // remove if there is a def below this use
InSetChanged = true;
if (DEBUG_LV >= LV_DEBUG_Verbose) cerr << " Use: " << RAV(Op) << "\n";
}
//-----------------------------------------------------------------------------
// Applies the transfer function to a basic block to produce the InSet using
// the OutSet.
//-----------------------------------------------------------------------------
bool BBLiveVar::applyTransferFunc() {
// IMPORTANT: caller should check whether the OutSet changed
// (else no point in calling)
ValueSet OutMinusDef = set_difference(OutSet, DefSet);
InSetChanged = set_union(InSet, OutMinusDef);
OutSetChanged = false; // no change to OutSet since transf func applied
return InSetChanged;
}
//-----------------------------------------------------------------------------
// calculates Out set using In sets of the successors
//-----------------------------------------------------------------------------
bool BBLiveVar::setPropagate(ValueSet *OutSet, const ValueSet *InSet,
const BasicBlock *PredBB) {
bool Changed = false;
// merge all members of InSet into OutSet of the predecessor
for (ValueSet::const_iterator InIt = InSet->begin(), InE = InSet->end();
InIt != InE; ++InIt)
if ((OutSet->insert(*InIt)).second)
Changed = true;
//
//**** WARNING: The following code for handling dummy PHI machine
// instructions is untested. See explanation above.
//
// then merge all members of the EdgeInSet for the predecessor into the OutSet
const ValueSet& EdgeInSet = PredToEdgeInSetMap[PredBB];
for (ValueSet::const_iterator InIt = EdgeInSet.begin(), InE = EdgeInSet.end();
InIt != InE; ++InIt)
if ((OutSet->insert(*InIt)).second)
Changed = true;
//
//****
return Changed;
}
//-----------------------------------------------------------------------------
// propogates in set to OutSets of PREDECESSORs
//-----------------------------------------------------------------------------
bool BBLiveVar::applyFlowFunc() {
// IMPORTANT: caller should check whether inset changed
// (else no point in calling)
// If this BB changed any OutSets of preds whose POID is lower, than we need
// another iteration...
//
bool needAnotherIt = false;
for (pred_const_iterator PI = pred_begin(BB), PE = pred_end(BB);
PI != PE ; ++PI) {
BBLiveVar *PredLVBB = BBLiveVar::GetFromBB(*PI);
// do set union
if (setPropagate(&PredLVBB->OutSet, &InSet, *PI)) {
PredLVBB->OutSetChanged = true;
// if the predec POID is lower than mine
if (PredLVBB->getPOId() <= POID)
needAnotherIt = true;
}
} // for
return needAnotherIt;
}
// ----------------- Methods For Debugging (Printing) -----------------
void BBLiveVar::printAllSets() const {
cerr << " Defs: "; printSet(DefSet); cerr << "\n";
cerr << " In: "; printSet(InSet); cerr << "\n";
cerr << " Out: "; printSet(OutSet); cerr << "\n";
}
void BBLiveVar::printInOutSets() const {
cerr << " In: "; printSet(InSet); cerr << "\n";
cerr << " Out: "; printSet(OutSet); cerr << "\n";
}