llvm-6502/utils/TableGen/AsmMatcherEmitter.cpp

628 lines
21 KiB
C++
Raw Normal View History

//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a target specifier matcher for converting parsed
// assembly operands in the MCInst structures.
//
// The input to the target specific matcher is a list of literal tokens and
// operands. The target specific parser should generally eliminate any syntax
// which is not relevant for matching; for example, comma tokens should have
// already been consumed and eliminated by the parser. Most instructions will
// end up with a single literal token (the instruction name) and some number of
// operands.
//
// Some example inputs, for X86:
// 'addl' (immediate ...) (register ...)
// 'add' (immediate ...) (memory ...)
// 'call' '*' %epc
//
// The assembly matcher is responsible for converting this input into a precise
// machine instruction (i.e., an instruction with a well defined encoding). This
// mapping has several properties which complicate matching:
//
// - It may be ambiguous; many architectures can legally encode particular
// variants of an instruction in different ways (for example, using a smaller
// encoding for small immediates). Such ambiguities should never be
// arbitrarily resolved by the assembler, the assembler is always responsible
// for choosing the "best" available instruction.
//
// - It may depend on the subtarget or the assembler context. Instructions
// which are invalid for the current mode, but otherwise unambiguous (e.g.,
// an SSE instruction in a file being assembled for i486) should be accepted
// and rejected by the assembler front end. However, if the proper encoding
// for an instruction is dependent on the assembler context then the matcher
// is responsible for selecting the correct machine instruction for the
// current mode.
//
// The core matching algorithm attempts to exploit the regularity in most
// instruction sets to quickly determine the set of possibly matching
// instructions, and the simplify the generated code. Additionally, this helps
// to ensure that the ambiguities are intentionally resolved by the user.
//
// The matching is divided into two distinct phases:
//
// 1. Classification: Each operand is mapped to the unique set which (a)
// contains it, and (b) is the largest such subset for which a single
// instruction could match all members.
//
// For register classes, we can generate these subgroups automatically. For
// arbitrary operands, we expect the user to define the classes and their
// relations to one another (for example, 8-bit signed immediates as a
// subset of 32-bit immediates).
//
// By partitioning the operands in this way, we guarantee that for any
// tuple of classes, any single instruction must match either all or none
// of the sets of operands which could classify to that tuple.
//
// In addition, the subset relation amongst classes induces a partial order
// on such tuples, which we use to resolve ambiguities.
//
// FIXME: What do we do if a crazy case shows up where this is the wrong
// resolution?
//
// 2. The input can now be treated as a tuple of classes (static tokens are
// simple singleton sets). Each such tuple should generally map to a single
// instruction (we currently ignore cases where this isn't true, whee!!!),
// which we can emit a simple matcher for.
//
//===----------------------------------------------------------------------===//
#include "AsmMatcherEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <set>
#include <list>
using namespace llvm;
namespace {
static cl::opt<std::string>
MatchOneInstr("match-one-instr", cl::desc("Match only the named instruction"),
cl::init(""));
}
/// FlattenVariants - Flatten an .td file assembly string by selecting the
/// variant at index \arg N.
static std::string FlattenVariants(const std::string &AsmString,
unsigned N) {
StringRef Cur = AsmString;
std::string Res = "";
for (;;) {
// Find the start of the next variant string.
size_t VariantsStart = 0;
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
if (Cur[VariantsStart] == '{' &&
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
Cur[VariantsStart-1] != '\\')))
break;
// Add the prefix to the result.
Res += Cur.slice(0, VariantsStart);
if (VariantsStart == Cur.size())
break;
++VariantsStart; // Skip the '{'.
// Scan to the end of the variants string.
size_t VariantsEnd = VariantsStart;
unsigned NestedBraces = 1;
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
if (--NestedBraces == 0)
break;
} else if (Cur[VariantsEnd] == '{')
++NestedBraces;
}
// Select the Nth variant (or empty).
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
for (unsigned i = 0; i != N; ++i)
Selection = Selection.split('|').second;
Res += Selection.split('|').first;
assert(VariantsEnd != Cur.size() &&
"Unterminated variants in assembly string!");
Cur = Cur.substr(VariantsEnd + 1);
}
return Res;
}
/// TokenizeAsmString - Tokenize a simplified assembly string.
static void TokenizeAsmString(const StringRef &AsmString,
SmallVectorImpl<StringRef> &Tokens) {
unsigned Prev = 0;
bool InTok = true;
for (unsigned i = 0, e = AsmString.size(); i != e; ++i) {
switch (AsmString[i]) {
case '[':
case ']':
case '*':
case '!':
case ' ':
case '\t':
case ',':
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
if (!isspace(AsmString[i]) && AsmString[i] != ',')
Tokens.push_back(AsmString.substr(i, 1));
Prev = i + 1;
break;
case '\\':
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
++i;
assert(i != AsmString.size() && "Invalid quoted character");
Tokens.push_back(AsmString.substr(i, 1));
Prev = i + 1;
break;
case '$': {
// If this isn't "${", treat like a normal token.
if (i + 1 == AsmString.size() || AsmString[i + 1] != '{') {
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
Prev = i;
break;
}
if (InTok) {
Tokens.push_back(AsmString.slice(Prev, i));
InTok = false;
}
StringRef::iterator End =
std::find(AsmString.begin() + i, AsmString.end(), '}');
assert(End != AsmString.end() && "Missing brace in operand reference!");
size_t EndPos = End - AsmString.begin();
Tokens.push_back(AsmString.slice(i, EndPos+1));
Prev = EndPos + 1;
i = EndPos;
break;
}
default:
InTok = true;
}
}
if (InTok && Prev != AsmString.size())
Tokens.push_back(AsmString.substr(Prev));
}
static bool IsAssemblerInstruction(const StringRef &Name,
const CodeGenInstruction &CGI,
const SmallVectorImpl<StringRef> &Tokens) {
// Ignore psuedo ops.
//
// FIXME: This is a hack.
if (const RecordVal *Form = CGI.TheDef->getValue("Form"))
if (Form->getValue()->getAsString() == "Pseudo")
return false;
// Ignore "PHI" node.
//
// FIXME: This is also a hack.
if (Name == "PHI")
return false;
// Ignore instructions with no .s string.
//
// FIXME: What are these?
if (CGI.AsmString.empty())
return false;
// FIXME: Hack; ignore any instructions with a newline in them.
if (std::find(CGI.AsmString.begin(),
CGI.AsmString.end(), '\n') != CGI.AsmString.end())
return false;
// Ignore instructions with attributes, these are always fake instructions for
// simplifying codegen.
//
// FIXME: Is this true?
//
// Also, we ignore instructions which reference the operand multiple times;
// this implies a constraint we would not currently honor. These are
// currently always fake instructions for simplifying codegen.
//
// FIXME: Encode this assumption in the .td, so we can error out here.
std::set<std::string> OperandNames;
for (unsigned i = 1, e = Tokens.size(); i < e; ++i) {
if (Tokens[i][0] == '$' &&
std::find(Tokens[i].begin(),
Tokens[i].end(), ':') != Tokens[i].end()) {
DEBUG({
errs() << "warning: '" << Name << "': "
<< "ignoring instruction; operand with attribute '"
<< Tokens[i] << "', \n";
});
return false;
}
if (Tokens[i][0] == '$' && !OperandNames.insert(Tokens[i]).second) {
DEBUG({
errs() << "warning: '" << Name << "': "
<< "ignoring instruction; tied operand '"
<< Tokens[i] << "', \n";
});
return false;
}
}
return true;
}
namespace {
struct InstructionInfo {
struct Operand {
enum {
Token,
Class
} Kind;
struct ClassData {
/// Operand - The tablegen operand this class corresponds to.
const CodeGenInstruction::OperandInfo *Operand;
/// ClassName - The name of this operand's class.
std::string ClassName;
/// PredicateMethod - The name of the operand method to test whether the
/// operand matches this class.
std::string PredicateMethod;
/// RenderMethod - The name of the operand method to add this operand to
/// an MCInst.
std::string RenderMethod;
} AsClass;
};
/// InstrName - The target name for this instruction.
std::string InstrName;
/// Instr - The instruction this matches.
const CodeGenInstruction *Instr;
/// AsmString - The assembly string for this instruction (with variants
/// removed).
std::string AsmString;
/// Tokens - The tokenized assembly pattern that this instruction matches.
SmallVector<StringRef, 4> Tokens;
/// Operands - The operands that this instruction matches.
SmallVector<Operand, 4> Operands;
/// ConversionFn - The name of the conversion function to convert parsed
/// operands into an MCInst for this function.
std::string ConversionFn;
/// OrderedClassOperands - The indices of the class operands, ordered by their
/// MIOperandNo order (which is the order they should be passed to the
/// conversion function).
SmallVector<unsigned, 4> OrderedClassOperands;
public:
void dump();
};
}
void InstructionInfo::dump() {
errs() << InstrName << " -- " << "flattened:\"" << AsmString << '\"'
<< ", tokens:[";
for (unsigned i = 0, e = Tokens.size(); i != e; ++i) {
errs() << Tokens[i];
if (i + 1 != e)
errs() << ", ";
}
errs() << "]\n";
for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
Operand &Op = Operands[i];
errs() << " op[" << i << "] = ";
if (Op.Kind == Operand::Token) {
errs() << '\"' << Tokens[i] << "\"\n";
continue;
}
assert(Op.Kind == Operand::Class && "Invalid kind!");
const CodeGenInstruction::OperandInfo &OI = *Op.AsClass.Operand;
errs() << OI.Name << " " << OI.Rec->getName()
<< " (" << OI.MIOperandNo << ", " << OI.MINumOperands << ")\n";
}
}
static void BuildInstructionInfos(CodeGenTarget &Target,
std::vector<InstructionInfo*> &Infos) {
const std::map<std::string, CodeGenInstruction> &Instructions =
Target.getInstructions();
for (std::map<std::string, CodeGenInstruction>::const_iterator
it = Instructions.begin(), ie = Instructions.end(); it != ie; ++it) {
const CodeGenInstruction &CGI = it->second;
if (!MatchOneInstr.empty() && it->first != MatchOneInstr)
continue;
OwningPtr<InstructionInfo> II(new InstructionInfo);
II->InstrName = it->first;
II->Instr = &it->second;
II->AsmString = FlattenVariants(CGI.AsmString, 0);
TokenizeAsmString(II->AsmString, II->Tokens);
// Ignore instructions which shouldn't be matched.
if (!IsAssemblerInstruction(it->first, CGI, II->Tokens))
continue;
for (unsigned i = 0, e = II->Tokens.size(); i != e; ++i) {
StringRef Token = II->Tokens[i];
// Check for simple tokens.
if (Token[0] != '$') {
InstructionInfo::Operand Op;
Op.Kind = InstructionInfo::Operand::Token;
II->Operands.push_back(Op);
continue;
}
// Otherwise this is an operand reference.
InstructionInfo::Operand Op;
Op.Kind = InstructionInfo::Operand::Class;
StringRef OperandName;
if (Token[1] == '{')
OperandName = Token.substr(2, Token.size() - 3);
else
OperandName = Token.substr(1);
// Map this token to an operand. FIXME: Move elsewhere.
unsigned Idx;
try {
Idx = CGI.getOperandNamed(OperandName);
} catch(...) {
errs() << "error: unable to find operand: '" << OperandName << "'!\n";
break;
}
const CodeGenInstruction::OperandInfo &OI = CGI.OperandList[Idx];
Op.AsClass.Operand = &OI;
if (OI.Rec->isSubClassOf("RegisterClass")) {
Op.AsClass.ClassName = "Reg";
Op.AsClass.PredicateMethod = "isReg";
Op.AsClass.RenderMethod = "addRegOperands";
} else if (OI.Rec->isSubClassOf("Operand")) {
// FIXME: This should not be hard coded.
const RecordVal *RV = OI.Rec->getValue("Type");
// FIXME: Yet another total hack.
if (RV->getValue()->getAsString() == "iPTR" ||
OI.Rec->getName() == "lea32mem" ||
OI.Rec->getName() == "lea64_32mem") {
Op.AsClass.ClassName = "Mem";
Op.AsClass.PredicateMethod = "isMem";
Op.AsClass.RenderMethod = "addMemOperands";
} else {
Op.AsClass.ClassName = "Imm";
Op.AsClass.PredicateMethod = "isImm";
Op.AsClass.RenderMethod = "addImmOperands";
}
} else {
OI.Rec->dump();
assert(0 && "Unexpected instruction operand record!");
}
II->Operands.push_back(Op);
}
// If we broke out, ignore the instruction.
if (II->Operands.size() != II->Tokens.size())
continue;
Infos.push_back(II.take());
}
}
static void ConstructConversionFunctions(CodeGenTarget &Target,
std::vector<InstructionInfo*> &Infos,
raw_ostream &OS) {
// Function we have already generated.
std::set<std::string> GeneratedFns;
for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
InstructionInfo &II = **it;
// Order the (class) operands by the order to convert them into an MCInst.
SmallVector<std::pair<unsigned, unsigned>, 4> MIOperandList;
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[i];
if (Op.Kind == InstructionInfo::Operand::Class)
MIOperandList.push_back(std::make_pair(Op.AsClass.Operand->MIOperandNo,
i));
}
std::sort(MIOperandList.begin(), MIOperandList.end());
// Compute the total number of operands.
unsigned NumMIOperands = 0;
for (unsigned i = 0, e = II.Instr->OperandList.size(); i != e; ++i) {
const CodeGenInstruction::OperandInfo &OI = II.Instr->OperandList[i];
NumMIOperands = std::max(NumMIOperands,
OI.MIOperandNo + OI.MINumOperands);
}
// Build the conversion function signature.
std::string Signature = "Convert";
unsigned CurIndex = 0;
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
assert(CurIndex <= Op.AsClass.Operand->MIOperandNo &&
"Duplicate match for instruction operand!");
// Save the conversion index, for use by the matcher.
II.OrderedClassOperands.push_back(MIOperandList[i].second);
// Skip operands which weren't matched by anything, this occurs when the
// .td file encodes "implicit" operands as explicit ones.
//
// FIXME: This should be removed from the MCInst structure.
for (; CurIndex != Op.AsClass.Operand->MIOperandNo; ++CurIndex)
Signature += "Imp";
Signature += Op.AsClass.ClassName;
Signature += utostr(Op.AsClass.Operand->MINumOperands);
CurIndex += Op.AsClass.Operand->MINumOperands;
}
// Add any trailing implicit operands.
for (; CurIndex != NumMIOperands; ++CurIndex)
Signature += "Imp";
// Save the conversion function, for use by the matcher.
II.ConversionFn = Signature;
// Check if we have already generated this function.
if (!GeneratedFns.insert(Signature).second)
continue;
// If not, emit it now.
//
// FIXME: There should be no need to pass the number of operands to fill;
// this should always be implicit in the class.
OS << "static bool " << Signature << "(MCInst &Inst, unsigned Opcode";
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i)
OS << ", " << Target.getName() << "Operand Op" << i;
OS << ") {\n";
OS << " Inst.setOpcode(Opcode);\n";
CurIndex = 0;
for (unsigned i = 0, e = MIOperandList.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[MIOperandList[i].second];
// Add the implicit operands.
for (; CurIndex != Op.AsClass.Operand->MIOperandNo; ++CurIndex)
OS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
OS << " Op" << i << "." << Op.AsClass.RenderMethod
<< "(Inst, " << Op.AsClass.Operand->MINumOperands << ");\n";
CurIndex += Op.AsClass.Operand->MINumOperands;
}
// And add trailing implicit operands.
for (; CurIndex != NumMIOperands; ++CurIndex)
OS << " Inst.addOperand(MCOperand::CreateReg(0));\n";
OS << " return false;\n";
OS << "}\n\n";
}
}
void AsmMatcherEmitter::run(raw_ostream &OS) {
CodeGenTarget Target;
const std::vector<CodeGenRegister> &Registers = Target.getRegisters();
Record *AsmParser = Target.getAsmParser();
std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
std::string Namespace = Registers[0].TheDef->getValueAsString("Namespace");
EmitSourceFileHeader("Assembly Matcher Source Fragment", OS);
// Emit the function to match a register name to number.
OS << "bool " << Target.getName() << ClassName
<< "::MatchRegisterName(const StringRef &Name, unsigned &RegNo) {\n";
// FIXME: TableGen should have a fast string matcher generator.
for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
const CodeGenRegister &Reg = Registers[i];
if (Reg.TheDef->getValueAsString("AsmName").empty())
continue;
OS << " if (Name == \""
<< Reg.TheDef->getValueAsString("AsmName") << "\")\n"
<< " return RegNo=" << i + 1 << ", false;\n";
}
OS << " return true;\n";
OS << "}\n\n";
std::vector<InstructionInfo*> Infos;
BuildInstructionInfos(Target, Infos);
#undef DEBUG_TYPE
#define DEBUG_TYPE "instruction_info"
DEBUG({
for (std::vector<InstructionInfo*>::iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it)
(*it)->dump();
});
#undef DEBUG_TYPE
#define DEBUG_TYPE ""
// FIXME: At this point we should be able to totally order Infos, if not then
// we have an ambiguity which the .td file should be forced to resolve.
// Generate the terminal actions to convert operands into an MCInst. We still
// pass the operands in to these functions individually (as opposed to the
// array) so that we do not need to worry about the operand order.
ConstructConversionFunctions(Target, Infos, OS);
// Build a very stupid version of the match function which just checks each
// instruction in order.
OS << "bool " << Target.getName() << ClassName
<< "::MatchInstruction("
<< "SmallVectorImpl<" << Target.getName() << "Operand> &Operands, "
<< "MCInst &Inst) {\n";
for (std::vector<InstructionInfo*>::const_iterator it = Infos.begin(),
ie = Infos.end(); it != ie; ++it) {
InstructionInfo &II = **it;
// The parser is expected to arrange things so that each "token" matches
// exactly one target specific operand.
OS << " if (Operands.size() == " << II.Operands.size();
for (unsigned i = 0, e = II.Operands.size(); i != e; ++i) {
InstructionInfo::Operand &Op = II.Operands[i];
OS << " &&\n";
OS << " ";
if (Op.Kind == InstructionInfo::Operand::Token)
OS << "Operands[" << i << "].isToken(\"" << II.Tokens[i] << "\")";
else
OS << "Operands[" << i << "]."
<< Op.AsClass.PredicateMethod << "()";
}
OS << ")\n";
OS << " return " << II.ConversionFn << "(Inst, "
<< Target.getName() << "::" << II.InstrName;
for (unsigned i = 0, e = II.OrderedClassOperands.size(); i != e; ++i)
OS << ", Operands[" << II.OrderedClassOperands[i] << "]";
OS << ");\n\n";
}
OS << " return true;\n";
OS << "}\n\n";
}