llvm-6502/lib/Transforms/Scalar/DCE.cpp

321 lines
11 KiB
C++
Raw Normal View History

//===- DCE.cpp - Code to perform dead code elimination --------------------===//
//
// This file implements dead code elimination and basic block merging.
//
// Specifically, this:
// * removes definitions with no uses (including unused constants)
// * removes basic blocks with no predecessors
// * merges a basic block into its predecessor if there is only one and the
// predecessor only has one successor.
// * Eliminates PHI nodes for basic blocks with a single predecessor
// * Eliminates a basic block that only contains an unconditional branch
// * Eliminates method prototypes that are not referenced
//
// TODO: This should REALLY be worklist driven instead of iterative. Right now,
// we scan linearly through values, removing unused ones as we go. The problem
// is that this may cause other earlier values to become unused. To make sure
// that we get them all, we iterate until things stop changing. Instead, when
// removing a value, recheck all of its operands to see if they are now unused.
// Piece of cake, and more efficient as well.
//
// Note, this is not trivial, because we have to worry about invalidating
// iterators. :(
//
//===----------------------------------------------------------------------===//
#include "llvm/Optimizations/DCE.h"
#include "llvm/Support/STLExtras.h"
#include "llvm/Module.h"
#include "llvm/Method.h"
#include "llvm/BasicBlock.h"
#include "llvm/iTerminators.h"
#include "llvm/iOther.h"
#include "llvm/Assembly/Writer.h"
#include <algorithm>
struct ConstPoolDCE {
enum { EndOffs = 0 };
static bool isDCEable(const ConstPoolVal *CPV) {
// TODO: The bytecode writer requires that all used types are in the
// constant pool for the current method. This is messy and is really
// irritating. FIXME
return CPV->getType() != Type::TypeTy; // Don't DCE Type plane constants!
}
};
struct BasicBlockDCE {
enum { EndOffs = 1 };
static bool isDCEable(const Instruction *I) {
return !I->hasSideEffects();
}
};
template<class Container, class DCEController>
static bool RemoveUnusedDefs(Container &Vals, DCEController DCEControl) {
bool Changed = false;
int Offset = DCEController::EndOffs;
for (typename Container::iterator DI = Vals.begin();
DI != Vals.end()-Offset; ) {
// Look for un"used" definitions...
if ((*DI)->use_empty() && DCEController::isDCEable(*DI)) {
// Bye bye
//cerr << "Removing: " << *DI;
delete Vals.remove(DI);
Changed = true;
} else {
++DI;
}
}
return Changed;
}
// RemoveSingularPHIs - This removes PHI nodes from basic blocks that have only
// a single predecessor. This means that the PHI node must only have a single
// RHS value and can be eliminated.
//
// This routine is very simple because we know that PHI nodes must be the first
// things in a basic block, if they are present.
//
static bool RemoveSingularPHIs(BasicBlock *BB) {
BasicBlock::pred_iterator PI(BB->pred_begin());
if (PI == BB->pred_end() || ++PI != BB->pred_end())
return false; // More than one predecessor...
Instruction *I = BB->front();
if (!I->isPHINode()) return false; // No PHI nodes
//cerr << "Killing PHIs from " << BB;
//cerr << "Pred #0 = " << *BB->pred_begin();
//cerr << "Method == " << BB->getParent();
do {
PHINode *PN = (PHINode*)I;
assert(PN->getNumOperands() == 2 && "PHI node should only have one value!");
Value *V = PN->getOperand(0);
PN->replaceAllUsesWith(V); // Replace PHI node with its single value.
delete BB->getInstList().remove(BB->begin());
I = BB->front();
} while (I->isPHINode());
return true; // Yes, we nuked at least one phi node
}
static void ReplaceUsesWithConstant(Instruction *I) {
ConstPoolVal *CPV = ConstPoolVal::getNullConstant(I->getType());
// Make all users of this instruction reference the constant instead
I->replaceAllUsesWith(CPV);
}
// PropogatePredecessors - This gets "Succ" ready to have the predecessors from
// "BB". This is a little tricky because "Succ" has PHI nodes, which need to
// have extra slots added to them to hold the merge edges from BB's
// predecessors.
//
// Assumption: BB is the single predecessor of Succ.
//
static void PropogatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
assert(Succ->front()->isPHINode() && "Only works on PHId BBs!");
// If there is more than one predecessor, and there are PHI nodes in
// the successor, then we need to add incoming edges for the PHI nodes
//
const vector<BasicBlock*> BBPreds(BB->pred_begin(), BB->pred_end());
BasicBlock::iterator I = Succ->begin();
do { // Loop over all of the PHI nodes in the successor BB
PHINode *PN = (PHINode*)*I;
Value *OldVal = PN->removeIncomingValue(BB);
assert(OldVal && "No entry in PHI for Pred BB!");
for (vector<BasicBlock*>::const_iterator PredI = BBPreds.begin(),
End = BBPreds.end(); PredI != End; ++PredI) {
// Add an incoming value for each of the new incoming values...
PN->addIncoming(OldVal, *PredI);
}
++I;
} while ((*I)->isPHINode());
}
// SimplifyCFG - This function is used to do simplification of a CFG. For
// example, it adjusts branches to branches to eliminate the extra hop, it
// eliminates unreachable basic blocks, and does other "peephole" optimization
// of the CFG. It returns true if a modification was made, and returns an
// iterator that designates the first element remaining after the block that
// was deleted.
//
// WARNING: The entry node of a method may not be simplified.
//
bool opt::SimplifyCFG(Method::iterator &BBIt) {
BasicBlock *BB = *BBIt;
Method *M = BB->getParent();
assert(BB && BB->getParent() && "Block not embedded in method!");
assert(BB->getTerminator() && "Degenerate basic block encountered!");
assert(BB->getParent()->front() != BB && "Can't Simplify entry block!");
// Remove basic blocks that have no predecessors... which are unreachable.
if (BB->pred_begin() == BB->pred_end() &&
!BB->hasConstantPoolReferences()) {
//cerr << "Removing BB: \n" << BB;
// Loop through all of our successors and make sure they know that one
// of their predecessors is going away.
for_each(BB->succ_begin(), BB->succ_end(),
std::bind2nd(std::mem_fun(&BasicBlock::removePredecessor), BB));
while (!BB->empty()) {
Instruction *I = BB->back();
// If this instruction is used, replace uses with an arbitrary
// constant value. Because control flow can't get here, we don't care
// what we replace the value with. Note that since this block is
// unreachable, and all values contained within it must dominate their
// uses, that all uses will eventually be removed.
if (!I->use_empty()) ReplaceUsesWithConstant(I);
// Remove the instruction from the basic block
delete BB->getInstList().pop_back();
}
delete M->getBasicBlocks().remove(BBIt);
return true;
}
// Check to see if this block has no instructions and only a single
// successor. If so, replace block references with successor.
BasicBlock::succ_iterator SI(BB->succ_begin());
if (SI != BB->succ_end() && ++SI == BB->succ_end()) { // One succ?
Instruction *I = BB->front();
if (I->isTerminator()) { // Terminator is the only instruction!
BasicBlock *Succ = *BB->succ_begin(); // There is exactly one successor
//cerr << "Killing Trivial BB: \n" << BB;
if (Succ != BB) { // Arg, don't hurt infinite loops!
if (Succ->front()->isPHINode()) {
// If our successor has PHI nodes, then we need to update them to
// include entries for BB's predecessors, not for BB itself.
//
PropogatePredecessorsForPHIs(BB, Succ);
}
BB->replaceAllUsesWith(Succ);
BB = M->getBasicBlocks().remove(BBIt);
if (BB->hasName() && !Succ->hasName()) // Transfer name if we can
Succ->setName(BB->getName());
delete BB; // Delete basic block
//cerr << "Method after removal: \n" << M;
return true;
}
}
}
// Merge basic blocks into their predecessor if there is only one pred,
// and if there is only one successor of the predecessor.
BasicBlock::pred_iterator PI(BB->pred_begin());
if (PI != BB->pred_end() && *PI != BB && // Not empty? Not same BB?
++PI == BB->pred_end() && !BB->hasConstantPoolReferences()) {
BasicBlock *Pred = *BB->pred_begin();
TerminatorInst *Term = Pred->getTerminator();
assert(Term != 0 && "malformed basic block without terminator!");
// Does the predecessor block only have a single successor?
BasicBlock::succ_iterator SI(Pred->succ_begin());
if (++SI == Pred->succ_end()) {
//cerr << "Merging: " << BB << "into: " << Pred;
// Delete the unconditianal branch from the predecessor...
BasicBlock::iterator DI = Pred->end();
assert(Pred->getTerminator() &&
"Degenerate basic block encountered!"); // Empty bb???
delete Pred->getInstList().remove(--DI); // Destroy uncond branch
// Move all definitions in the succecessor to the predecessor...
while (!BB->empty()) {
DI = BB->begin();
Instruction *Def = BB->getInstList().remove(DI); // Remove from front
Pred->getInstList().push_back(Def); // Add to end...
}
// Remove basic block from the method... and advance iterator to the
// next valid block...
BB = M->getBasicBlocks().remove(BBIt);
// Make all PHI nodes that refered to BB now refer to Pred as their
// source...
BB->replaceAllUsesWith(Pred);
// Inherit predecessors name if it exists...
if (BB->hasName() && !Pred->hasName()) Pred->setName(BB->getName());
delete BB; // You ARE the weakest link... goodbye
return true;
}
}
return false;
}
static bool DoDCEPass(Method *M) {
Method::iterator BBIt, BBEnd = M->end();
if (M->begin() == BBEnd) return false; // Nothing to do
bool Changed = false;
// Loop through now and remove instructions that have no uses...
for (BBIt = M->begin(); BBIt != BBEnd; ++BBIt) {
Changed |= RemoveUnusedDefs((*BBIt)->getInstList(), BasicBlockDCE());
Changed |= RemoveSingularPHIs(*BBIt);
}
// Loop over all of the basic blocks (except the first one) and remove them
// if they are unneeded...
//
for (BBIt = M->begin(), ++BBIt; BBIt != M->end(); ) {
if (opt::SimplifyCFG(BBIt)) {
Changed = true;
} else {
++BBIt;
}
}
return Changed;
}
// It is possible that we may require multiple passes over the code to fully
// eliminate dead code. Iterate until we are done.
//
bool opt::DoDeadCodeElimination(Method *M) {
bool Changed = false;
while (DoDCEPass(M)) Changed = true;
return Changed;
}
bool opt::DoDeadCodeElimination(Module *Mod) {
bool Changed = false;
for (Module::iterator MI = Mod->begin(); MI != Mod->end(); ) {
Method *Meth = *MI;
if (!Meth->isExternal()) { // DCE normal methods
Changed |= DoDeadCodeElimination(Meth);
++MI; // Next method please
} else if (Meth->use_size() == 0) { // No references to prototype?
//cerr << "Removing method proto: " << Meth->getName() << endl;
delete Mod->getMethodList().remove(MI); // Remove prototype
// Remove moves iterator to point to the next one automatically
} else {
++MI; // Skip prototype in use.
}
}
return Changed;
}