llvm-6502/lib/CodeGen/CMakeLists.txt

115 lines
2.5 KiB
CMake
Raw Normal View History

add_llvm_library(LLVMCodeGen
AggressiveAntiDepBreaker.cpp
AllocationOrder.cpp
Analysis.cpp
BranchFolding.cpp
CalcSpillWeights.cpp
CallingConvLower.cpp
CodeGen.cpp
CodePlacementOpt.cpp
CriticalAntiDepBreaker.cpp
DeadMachineInstructionElim.cpp
Add a new codegen pass that normalizes dwarf exception handling code in preparation for code generation. The main thing it does is handle the case when eh.exception calls (and, in a future patch, eh.selector calls) are far away from landing pads. Right now in practice you only find eh.exception calls close to landing pads: either in a landing pad (the common case) or in a landing pad successor, due to loop passes shifting them about. However future exception handling improvements will result in calls far from landing pads: (1) Inlining of rewinds. Consider the following case: In function @f: ... invoke @g to label %normal unwind label %unwinds ... unwinds: %ex = call i8* @llvm.eh.exception() ... In function @g: ... invoke @something to label %continue unwind label %handler ... handler: %ex = call i8* @llvm.eh.exception() ... perform cleanups ... "rethrow exception" Now inline @g into @f. Currently this is turned into: In function @f: ... invoke @something to label %continue unwind label %handler ... handler: %ex = call i8* @llvm.eh.exception() ... perform cleanups ... invoke "rethrow exception" to label %normal unwind label %unwinds unwinds: %ex = call i8* @llvm.eh.exception() ... However we would like to simplify invoke of "rethrow exception" into a branch to the %unwinds label. Then %unwinds is no longer a landing pad, and the eh.exception call there is then far away from any landing pads. (2) Using the unwind instruction for cleanups. It would be nice to have codegen handle the following case: invoke @something to label %continue unwind label %run_cleanups ... handler: ... perform cleanups ... unwind This requires turning "unwind" into a library call, which necessarily takes a pointer to the exception as an argument (this patch also does this unwind lowering). But that means you are using eh.exception again far from a landing pad. (3) Bugpoint simplifications. When bugpoint is simplifying exception handling code it often generates eh.exception calls far from a landing pad, which then causes codegen to assert. Bugpoint then latches on to this assertion and loses sight of the original problem. Note that it is currently rare for this pass to actually do anything. And in fact it normally shouldn't do anything at all given the code coming out of llvm-gcc! But it does fire a few times in the testsuite. As far as I can see this is almost always due to the LoopStrengthReduce codegen pass introducing pointless loop preheader blocks which are landing pads and only contain a branch to another block. This other block contains an eh.exception call. So probably by tweaking LoopStrengthReduce a bit this can be avoided. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@72276 91177308-0d34-0410-b5e6-96231b3b80d8
2009-05-22 20:36:31 +00:00
DwarfEHPrepare.cpp
EdgeBundles.cpp
ELFCodeEmitter.cpp
ELFWriter.cpp
ExecutionDepsFix.cpp
ExpandISelPseudos.cpp
ExpandPostRAPseudos.cpp
GCMetadata.cpp
GCMetadataPrinter.cpp
GCStrategy.cpp
IfConversion.cpp
InlineSpiller.cpp
InterferenceCache.cpp
IntrinsicLowering.cpp
LLVMTargetMachine.cpp
LatencyPriorityQueue.cpp
LexicalScopes.cpp
LiveDebugVariables.cpp
LiveInterval.cpp
LiveIntervalAnalysis.cpp
LiveIntervalUnion.cpp
LiveStackAnalysis.cpp
LiveVariables.cpp
LiveRangeCalc.cpp
LiveRangeEdit.cpp
LocalStackSlotAllocation.cpp
MachineBasicBlock.cpp
MachineBlockFrequencyInfo.cpp
MachineBranchProbabilityInfo.cpp
MachineCSE.cpp
MachineDominators.cpp
MachineFunction.cpp
MachineFunctionAnalysis.cpp
MachineFunctionPass.cpp
MachineFunctionPrinterPass.cpp
MachineInstr.cpp
MachineLICM.cpp
MachineLoopInfo.cpp
MachineLoopRanges.cpp
MachineModuleInfo.cpp
MachineModuleInfoImpls.cpp
MachinePassRegistry.cpp
MachineRegisterInfo.cpp
MachineSSAUpdater.cpp
MachineSink.cpp
MachineVerifier.cpp
ObjectCodeEmitter.cpp
OcamlGC.cpp
OptimizePHIs.cpp
PHIElimination.cpp
PHIEliminationUtils.cpp
Passes.cpp
PeepholeOptimizer.cpp
PostRASchedulerList.cpp
ProcessImplicitDefs.cpp
PrologEpilogInserter.cpp
PseudoSourceValue.cpp
RegAllocBasic.cpp
RegAllocFast.cpp
RegAllocGreedy.cpp
RegAllocLinearScan.cpp
RegAllocPBQP.cpp
RegisterClassInfo.cpp
RegisterCoalescer.cpp
RegisterScavenging.cpp
RenderMachineFunction.cpp
ScheduleDAG.cpp
ScheduleDAGEmit.cpp
ScheduleDAGInstrs.cpp
ScheduleDAGPrinter.cpp
ScoreboardHazardRecognizer.cpp
ShadowStackGC.cpp
ShrinkWrapping.cpp
SjLjEHPrepare.cpp
SlotIndexes.cpp
Spiller.cpp
SpillPlacement.cpp
SplitKit.cpp
Splitter.cpp
StackProtector.cpp
StackSlotColoring.cpp
StrongPHIElimination.cpp
TailDuplication.cpp
TargetInstrInfoImpl.cpp
TargetLoweringObjectFileImpl.cpp
TwoAddressInstructionPass.cpp
UnreachableBlockElim.cpp
VirtRegMap.cpp
VirtRegRewriter.cpp
)
Rewrite the CMake build to use explicit dependencies between libraries, specified in the same file that the library itself is created. This is more idiomatic for CMake builds, and also allows us to correctly specify dependencies that are missed due to bugs in the GenLibDeps perl script, or change from compiler to compiler. On Linux, this returns CMake to a place where it can relably rebuild several targets of LLVM. I have tried not to change the dependencies from the ones in the current auto-generated file. The only places I've really diverged are in places where I was seeing link failures, and added a dependency. The goal of this patch is not to start changing the dependencies, merely to move them into the correct location, and an explicit form that we can control and change when necessary. This also removes a serialization point in the build because we don't have to scan all the libraries before we begin building various tools. We no longer have a step of the build that regenerates a file inside the source tree. A few other associated cleanups fall out of this. This isn't really finished yet though. After talking to dgregor he urged switching to a single CMake macro to construct libraries with both sources and dependencies in the arguments. Migrating from the two macros to that style will be a follow-up patch. Also, llvm-config is still generated with GenLibDeps.pl, which means it still has slightly buggy dependencies. The internal CMake 'llvm-config-like' macro uses the correct explicitly specified dependencies however. A future patch will switch llvm-config generation (when using CMake) to be based on these deps as well. This may well break Windows. I'm getting a machine set up now to dig into any failures there. If anyone can chime in with problems they see or ideas of how to solve them for Windows, much appreciated. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136433 91177308-0d34-0410-b5e6-96231b3b80d8
2011-07-29 00:14:25 +00:00
add_llvm_library_dependencies(LLVMCodeGen
LLVMAnalysis
LLVMCore
LLVMMC
LLVMScalarOpts
LLVMSupport
LLVMTarget
LLVMTransformUtils
)
add_subdirectory(SelectionDAG)
add_subdirectory(AsmPrinter)