llvm-6502/lib/CodeGen/MachineScheduler.cpp

410 lines
13 KiB
C++
Raw Normal View History

//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "misched"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/OwningPtr.h"
#include <queue>
using namespace llvm;
#ifndef NDEBUG
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
cl::desc("Pop up a window to show MISched dags after they are processed"));
#else
static bool ViewMISchedDAGs = false;
#endif // NDEBUG
//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//
namespace {
/// MachineScheduler runs after coalescing and before register allocation.
class MachineScheduler : public MachineFunctionPass {
public:
MachineFunction *MF;
const TargetInstrInfo *TII;
const MachineLoopInfo *MLI;
const MachineDominatorTree *MDT;
LiveIntervals *LIS;
MachineScheduler();
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory() {}
virtual bool runOnMachineFunction(MachineFunction&);
virtual void print(raw_ostream &O, const Module* = 0) const;
static char ID; // Class identification, replacement for typeinfo
};
} // namespace
char MachineScheduler::ID = 0;
char &llvm::MachineSchedulerID = MachineScheduler::ID;
INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
"Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachineScheduler, "misched",
"Machine Instruction Scheduler", false, false)
MachineScheduler::MachineScheduler()
: MachineFunctionPass(ID), MF(0), MLI(0), MDT(0) {
initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
}
void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(MachineDominatorsID);
AU.addRequired<MachineLoopInfo>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
namespace {
/// MachineSchedRegistry provides a selection of available machine instruction
/// schedulers.
class MachineSchedRegistry : public MachinePassRegistryNode {
public:
typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineScheduler *);
// RegisterPassParser requires a (misnamed) FunctionPassCtor type.
typedef ScheduleDAGCtor FunctionPassCtor;
static MachinePassRegistry Registry;
MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
: MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
Registry.Add(this);
}
~MachineSchedRegistry() { Registry.Remove(this); }
// Accessors.
//
MachineSchedRegistry *getNext() const {
return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
}
static MachineSchedRegistry *getList() {
return (MachineSchedRegistry *)Registry.getList();
}
static ScheduleDAGCtor getDefault() {
return (ScheduleDAGCtor)Registry.getDefault();
}
static void setDefault(ScheduleDAGCtor C) {
Registry.setDefault((MachinePassCtor)C);
}
static void setListener(MachinePassRegistryListener *L) {
Registry.setListener(L);
}
};
} // namespace
MachinePassRegistry MachineSchedRegistry::Registry;
static ScheduleDAGInstrs *createDefaultMachineSched(MachineScheduler *P);
/// MachineSchedOpt allows command line selection of the scheduler.
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
RegisterPassParser<MachineSchedRegistry> >
MachineSchedOpt("misched",
cl::init(&createDefaultMachineSched), cl::Hidden,
cl::desc("Machine instruction scheduler to use"));
//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Common Implementation
//===----------------------------------------------------------------------===//
namespace {
/// ScheduleTopDownLive is an implementation of ScheduleDAGInstrs that schedules
/// machine instructions while updating LiveIntervals.
class ScheduleTopDownLive : public ScheduleDAGInstrs {
protected:
MachineScheduler *Pass;
public:
ScheduleTopDownLive(MachineScheduler *P):
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false, P->LIS),
Pass(P) {}
/// ScheduleDAGInstrs callback.
void schedule();
/// Interface implemented by the selected top-down liveinterval scheduler.
///
/// Pick the next node to schedule, or return NULL.
virtual SUnit *pickNode() = 0;
/// When all preceeding dependencies have been resolved, free this node for
/// scheduling.
virtual void releaseNode(SUnit *SU) = 0;
protected:
void releaseSucc(SUnit *SU, SDep *SuccEdge);
void releaseSuccessors(SUnit *SU);
};
} // namespace
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
/// NumPredsLeft reaches zero, release the successor node.
void ScheduleTopDownLive::releaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
--SuccSU->NumPredsLeft;
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
releaseNode(SuccSU);
}
/// releaseSuccessors - Call releaseSucc on each of SU's successors.
void ScheduleTopDownLive::releaseSuccessors(SUnit *SU) {
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
releaseSucc(SU, &*I);
}
}
/// schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
void ScheduleTopDownLive::schedule() {
buildSchedGraph(&Pass->getAnalysis<AliasAnalysis>());
DEBUG(dbgs() << "********** MI Scheduling **********\n");
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
if (ViewMISchedDAGs) viewGraph();
// Release any successors of the special Entry node. It is currently unused,
// but we keep up appearances.
releaseSuccessors(&EntrySU);
// Release all DAG roots for scheduling.
for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end();
I != E; ++I) {
// A SUnit is ready to schedule if it has no predecessors.
if (I->Preds.empty())
releaseNode(&(*I));
}
MachineBasicBlock::iterator InsertPos = Begin;
while (SUnit *SU = pickNode()) {
DEBUG(dbgs() << "*** Scheduling Instruction:\n"; SU->dump(this));
// Move the instruction to its new location in the instruction stream.
MachineInstr *MI = SU->getInstr();
if (&*InsertPos == MI)
++InsertPos;
else {
BB->splice(InsertPos, BB, MI);
Pass->LIS->handleMove(MI);
if (Begin == InsertPos)
Begin = MI;
}
// Release dependent instructions for scheduling.
releaseSuccessors(SU);
}
}
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
// Initialize the context of the pass.
MF = &mf;
MLI = &getAnalysis<MachineLoopInfo>();
MDT = &getAnalysis<MachineDominatorTree>();
LIS = &getAnalysis<LiveIntervals>();
TII = MF->getTarget().getInstrInfo();
// Select the scheduler, or set the default.
MachineSchedRegistry::ScheduleDAGCtor Ctor =
MachineSchedRegistry::getDefault();
if (!Ctor) {
Ctor = MachineSchedOpt;
MachineSchedRegistry::setDefault(Ctor);
}
// Instantiate the selected scheduler.
OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
// Visit all machine basic blocks.
for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
MBB != MBBEnd; ++MBB) {
// Break the block into scheduling regions [I, RegionEnd), and schedule each
// region as soon as it is discovered.
unsigned RemainingCount = MBB->size();
for(MachineBasicBlock::iterator RegionEnd = MBB->end();
RegionEnd != MBB->begin();) {
Scheduler->startBlock(MBB);
// The next region starts above the previous region. Look backward in the
// instruction stream until we find the nearest boundary.
MachineBasicBlock::iterator I = RegionEnd;
for(;I != MBB->begin(); --I, --RemainingCount) {
if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
break;
}
misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation. ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class. ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target. Specific changes: - Removed driver code from ScheduleDAG. clearDAG is the only interface needed. - Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls. - Added ScheduleDAGInstrs::begin()/end() public API. - Moved Sequence into the driver layer, which is specific to the scheduling algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-07 05:21:52 +00:00
// Notify the scheduler of the region, even if we may skip scheduling
// it. Perhaps it still needs to be bundled.
Scheduler->enterRegion(MBB, I, RegionEnd, RemainingCount);
// Skip empty scheduling regions (0 or 1 schedulable instructions).
if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
RegionEnd = llvm::prior(RegionEnd);
misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation. ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class. ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target. Specific changes: - Removed driver code from ScheduleDAG. clearDAG is the only interface needed. - Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls. - Added ScheduleDAGInstrs::begin()/end() public API. - Moved Sequence into the driver layer, which is specific to the scheduling algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-07 05:21:52 +00:00
if (I != RegionEnd)
--RemainingCount;
// Close the current region. Bundle the terminator if needed.
Scheduler->exitRegion();
continue;
}
DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName()
<< ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: ";
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
else dbgs() << "End";
dbgs() << " Remaining: " << RemainingCount << "\n");
// Inform ScheduleDAGInstrs of the region being scheduled. It calls back
// to our schedule() method.
Scheduler->schedule();
misched preparation: clarify ScheduleDAG and ScheduleDAGInstrs roles. ScheduleDAG is responsible for the DAG: SUnits and SDeps. It provides target hooks for latency computation. ScheduleDAGInstrs extends ScheduleDAG and defines the current scheduling region in terms of MachineInstr iterators. It has access to the target's scheduling itinerary data. ScheduleDAGInstrs provides the logic for building the ScheduleDAG for the sequence of MachineInstrs in the current region. Target's can implement highly custom schedulers by extending this class. ScheduleDAGPostRATDList provides the driver and diagnostics for current postRA scheduling. It maintains a current Sequence of scheduled machine instructions and logic for splicing them into the block. During scheduling, it uses the ScheduleHazardRecognizer provided by the target. Specific changes: - Removed driver code from ScheduleDAG. clearDAG is the only interface needed. - Added enterRegion/exitRegion hooks to ScheduleDAGInstrs to delimit the scope of each scheduling region and associated DAG. They should be used to setup and cleanup any region-specific state in addition to the DAG itself. This is necessary because we reuse the same ScheduleDAG object for the entire function. The target may extend these hooks to do things at regions boundaries, like bundle terminators. The hooks are called even if we decide not to schedule the region. So all instructions in a block are "covered" by these calls. - Added ScheduleDAGInstrs::begin()/end() public API. - Moved Sequence into the driver layer, which is specific to the scheduling algorithm. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152208 91177308-0d34-0410-b5e6-96231b3b80d8
2012-03-07 05:21:52 +00:00
Scheduler->exitRegion();
// Scheduling has invalidated the current iterator 'I'. Ask the
// scheduler for the top of it's scheduled region.
RegionEnd = Scheduler->begin();
}
assert(RemainingCount == 0 && "Instruction count mismatch!");
Scheduler->finishBlock();
}
return true;
}
void MachineScheduler::print(raw_ostream &O, const Module* m) const {
// unimplemented
}
//===----------------------------------------------------------------------===//
// Placeholder for extending the machine instruction scheduler.
//===----------------------------------------------------------------------===//
namespace {
class DefaultMachineScheduler : public ScheduleDAGInstrs {
MachineScheduler *Pass;
public:
DefaultMachineScheduler(MachineScheduler *P):
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false, P->LIS),
Pass(P) {}
/// schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
void schedule();
};
} // namespace
static ScheduleDAGInstrs *createDefaultMachineSched(MachineScheduler *P) {
return new DefaultMachineScheduler(P);
}
static MachineSchedRegistry
SchedDefaultRegistry("default", "Activate the scheduler pass, "
"but don't reorder instructions",
createDefaultMachineSched);
/// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
void DefaultMachineScheduler::schedule() {
buildSchedGraph(&Pass->getAnalysis<AliasAnalysis>());
DEBUG(dbgs() << "********** MI Scheduling **********\n");
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
// TODO: Put interesting things here.
//
// When this is fully implemented, it will become a subclass of
// ScheduleTopDownLive. So this driver will disappear.
}
//===----------------------------------------------------------------------===//
// Machine Instruction Shuffler for Correctness Testing
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace {
// Nodes with a higher number have higher priority. This way we attempt to
// schedule the latest instructions earliest.
//
// TODO: Relies on the property of the BuildSchedGraph that results in SUnits
// being ordered in sequence top-down.
struct ShuffleSUnitOrder {
bool operator()(SUnit *A, SUnit *B) const {
return A->NodeNum < B->NodeNum;
}
};
/// Reorder instructions as much as possible.
class InstructionShuffler : public ScheduleTopDownLive {
std::priority_queue<SUnit*, std::vector<SUnit*>, ShuffleSUnitOrder> Queue;
public:
InstructionShuffler(MachineScheduler *P):
ScheduleTopDownLive(P) {}
/// ScheduleTopDownLive Interface
virtual SUnit *pickNode() {
if (Queue.empty()) return NULL;
SUnit *SU = Queue.top();
Queue.pop();
return SU;
}
virtual void releaseNode(SUnit *SU) {
Queue.push(SU);
}
};
} // namespace
static ScheduleDAGInstrs *createInstructionShuffler(MachineScheduler *P) {
return new InstructionShuffler(P);
}
static MachineSchedRegistry ShufflerRegistry("shuffle",
"Shuffle machine instructions",
createInstructionShuffler);
#endif // !NDEBUG