llvm-6502/lib/Target/R600/R600MachineScheduler.cpp

470 lines
14 KiB
C++
Raw Normal View History

//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief R600 Machine Scheduler interface
//
//===----------------------------------------------------------------------===//
#include "R600MachineScheduler.h"
#include "AMDGPUSubtarget.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "misched"
void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness");
DAG = static_cast<ScheduleDAGMILive*>(dag);
const AMDGPUSubtarget &ST = DAG->TM.getSubtarget<AMDGPUSubtarget>();
TII = static_cast<const R600InstrInfo*>(DAG->TII);
TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
VLIW5 = !ST.hasCaymanISA();
MRI = &DAG->MRI;
CurInstKind = IDOther;
CurEmitted = 0;
OccupedSlotsMask = 31;
InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
InstKindLimit[IDOther] = 32;
InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
AluInstCount = 0;
FetchInstCount = 0;
}
void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
std::vector<SUnit *> &QDst)
{
QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
QSrc.clear();
}
static
unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
assert (GPRCount && "GPRCount cannot be 0");
return 248 / GPRCount;
}
SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
SUnit *SU = nullptr;
NextInstKind = IDOther;
IsTopNode = false;
// check if we might want to switch current clause type
bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
(Available[CurInstKind].empty());
bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
(!Available[IDFetch].empty() || !Available[IDOther].empty());
if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
// We use the heuristic provided by AMD Accelerated Parallel Processing
// OpenCL Programming Guide :
// The approx. number of WF that allows TEX inst to hide ALU inst is :
// 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
float ALUFetchRationEstimate =
(AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
(FetchInstCount + Available[IDFetch].size());
if (ALUFetchRationEstimate == 0) {
AllowSwitchFromAlu = true;
} else {
unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
// We assume the local GPR requirements to be "dominated" by the requirement
// of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
// after TEX are indeed likely to consume or generate values from/for the
// TEX clause.
// Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
// We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
// one GPR) or TmXYZW = TnXYZW (need 2 GPR).
// (TODO : use RegisterPressure)
// If we are going too use too many GPR, we flush Fetch instruction to lower
// register pressure on 128 bits regs.
unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
AllowSwitchFromAlu = true;
}
}
if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
(!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
// try to pick ALU
SU = pickAlu();
if (!SU && !PhysicalRegCopy.empty()) {
SU = PhysicalRegCopy.front();
PhysicalRegCopy.erase(PhysicalRegCopy.begin());
}
if (SU) {
if (CurEmitted >= InstKindLimit[IDAlu])
CurEmitted = 0;
NextInstKind = IDAlu;
}
}
if (!SU) {
// try to pick FETCH
SU = pickOther(IDFetch);
if (SU)
NextInstKind = IDFetch;
}
// try to pick other
if (!SU) {
SU = pickOther(IDOther);
if (SU)
NextInstKind = IDOther;
}
DEBUG(
if (SU) {
dbgs() << " ** Pick node **\n";
SU->dump(DAG);
} else {
dbgs() << "NO NODE \n";
for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
const SUnit &S = DAG->SUnits[i];
if (!S.isScheduled)
S.dump(DAG);
}
}
);
return SU;
}
void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
if (NextInstKind != CurInstKind) {
DEBUG(dbgs() << "Instruction Type Switch\n");
if (NextInstKind != IDAlu)
OccupedSlotsMask |= 31;
CurEmitted = 0;
CurInstKind = NextInstKind;
}
if (CurInstKind == IDAlu) {
AluInstCount ++;
switch (getAluKind(SU)) {
case AluT_XYZW:
CurEmitted += 4;
break;
case AluDiscarded:
break;
default: {
++CurEmitted;
for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
E = SU->getInstr()->operands_end(); It != E; ++It) {
MachineOperand &MO = *It;
if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
++CurEmitted;
}
}
}
} else {
++CurEmitted;
}
DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");
if (CurInstKind != IDFetch) {
MoveUnits(Pending[IDFetch], Available[IDFetch]);
} else
FetchInstCount++;
}
static bool
isPhysicalRegCopy(MachineInstr *MI) {
if (MI->getOpcode() != AMDGPU::COPY)
return false;
return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg());
}
void R600SchedStrategy::releaseTopNode(SUnit *SU) {
DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG););
}
void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG););
if (isPhysicalRegCopy(SU->getInstr())) {
PhysicalRegCopy.push_back(SU);
return;
}
int IK = getInstKind(SU);
// There is no export clause, we can schedule one as soon as its ready
if (IK == IDOther)
Available[IDOther].push_back(SU);
else
Pending[IK].push_back(SU);
}
bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
const TargetRegisterClass *RC) const {
if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
return RC->contains(Reg);
} else {
return MRI->getRegClass(Reg) == RC;
}
}
R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
MachineInstr *MI = SU->getInstr();
if (TII->isTransOnly(MI))
return AluTrans;
switch (MI->getOpcode()) {
case AMDGPU::PRED_X:
return AluPredX;
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::DOT_4:
return AluT_XYZW;
case AMDGPU::COPY:
if (MI->getOperand(1).isUndef()) {
// MI will become a KILL, don't considers it in scheduling
return AluDiscarded;
}
default:
break;
}
// Does the instruction take a whole IG ?
// XXX: Is it possible to add a helper function in R600InstrInfo that can
// be used here and in R600PacketizerList::isSoloInstruction() ?
if(TII->isVector(*MI) ||
TII->isCubeOp(MI->getOpcode()) ||
TII->isReductionOp(MI->getOpcode()) ||
MI->getOpcode() == AMDGPU::GROUP_BARRIER) {
return AluT_XYZW;
}
if (TII->isLDSInstr(MI->getOpcode())) {
return AluT_X;
}
// Is the result already assigned to a channel ?
unsigned DestSubReg = MI->getOperand(0).getSubReg();
switch (DestSubReg) {
case AMDGPU::sub0:
return AluT_X;
case AMDGPU::sub1:
return AluT_Y;
case AMDGPU::sub2:
return AluT_Z;
case AMDGPU::sub3:
return AluT_W;
default:
break;
}
// Is the result already member of a X/Y/Z/W class ?
unsigned DestReg = MI->getOperand(0).getReg();
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) ||
regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass))
return AluT_X;
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass))
return AluT_Y;
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass))
return AluT_Z;
if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass))
return AluT_W;
if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass))
return AluT_XYZW;
// LDS src registers cannot be used in the Trans slot.
if (TII->readsLDSSrcReg(MI))
return AluT_XYZW;
return AluAny;
}
int R600SchedStrategy::getInstKind(SUnit* SU) {
int Opcode = SU->getInstr()->getOpcode();
if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
return IDFetch;
if (TII->isALUInstr(Opcode)) {
return IDAlu;
}
switch (Opcode) {
case AMDGPU::PRED_X:
case AMDGPU::COPY:
case AMDGPU::CONST_COPY:
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::DOT_4:
return IDAlu;
default:
return IDOther;
}
}
SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q, bool AnyALU) {
if (Q.empty())
return nullptr;
for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
It != E; ++It) {
SUnit *SU = *It;
InstructionsGroupCandidate.push_back(SU->getInstr());
if (TII->fitsConstReadLimitations(InstructionsGroupCandidate)
&& (!AnyALU || !TII->isVectorOnly(SU->getInstr()))
) {
InstructionsGroupCandidate.pop_back();
Q.erase((It + 1).base());
return SU;
} else {
InstructionsGroupCandidate.pop_back();
}
}
return nullptr;
}
void R600SchedStrategy::LoadAlu() {
std::vector<SUnit *> &QSrc = Pending[IDAlu];
for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
AluKind AK = getAluKind(QSrc[i]);
AvailableAlus[AK].push_back(QSrc[i]);
}
QSrc.clear();
}
void R600SchedStrategy::PrepareNextSlot() {
DEBUG(dbgs() << "New Slot\n");
assert (OccupedSlotsMask && "Slot wasn't filled");
OccupedSlotsMask = 0;
// if (HwGen == AMDGPUSubtarget::NORTHERN_ISLANDS)
// OccupedSlotsMask |= 16;
InstructionsGroupCandidate.clear();
LoadAlu();
}
void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
int DstIndex = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
if (DstIndex == -1) {
return;
}
unsigned DestReg = MI->getOperand(DstIndex).getReg();
// PressureRegister crashes if an operand is def and used in the same inst
// and we try to constraint its regclass
for (MachineInstr::mop_iterator It = MI->operands_begin(),
E = MI->operands_end(); It != E; ++It) {
MachineOperand &MO = *It;
if (MO.isReg() && !MO.isDef() &&
MO.getReg() == DestReg)
return;
}
// Constrains the regclass of DestReg to assign it to Slot
switch (Slot) {
case 0:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass);
break;
case 1:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass);
break;
case 2:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass);
break;
case 3:
MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass);
break;
}
}
SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) {
static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu);
if (SlotedSU)
return SlotedSU;
SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu);
if (UnslotedSU)
AssignSlot(UnslotedSU->getInstr(), Slot);
return UnslotedSU;
}
unsigned R600SchedStrategy::AvailablesAluCount() const {
return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() +
AvailableAlus[AluPredX].size();
}
SUnit* R600SchedStrategy::pickAlu() {
while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
if (!OccupedSlotsMask) {
// Bottom up scheduling : predX must comes first
if (!AvailableAlus[AluPredX].empty()) {
OccupedSlotsMask |= 31;
return PopInst(AvailableAlus[AluPredX], false);
}
// Flush physical reg copies (RA will discard them)
if (!AvailableAlus[AluDiscarded].empty()) {
OccupedSlotsMask |= 31;
return PopInst(AvailableAlus[AluDiscarded], false);
}
// If there is a T_XYZW alu available, use it
if (!AvailableAlus[AluT_XYZW].empty()) {
OccupedSlotsMask |= 15;
return PopInst(AvailableAlus[AluT_XYZW], false);
}
}
bool TransSlotOccuped = OccupedSlotsMask & 16;
if (!TransSlotOccuped && VLIW5) {
if (!AvailableAlus[AluTrans].empty()) {
OccupedSlotsMask |= 16;
return PopInst(AvailableAlus[AluTrans], false);
}
SUnit *SU = AttemptFillSlot(3, true);
if (SU) {
OccupedSlotsMask |= 16;
return SU;
}
}
for (int Chan = 3; Chan > -1; --Chan) {
bool isOccupied = OccupedSlotsMask & (1 << Chan);
if (!isOccupied) {
SUnit *SU = AttemptFillSlot(Chan, false);
if (SU) {
OccupedSlotsMask |= (1 << Chan);
InstructionsGroupCandidate.push_back(SU->getInstr());
return SU;
}
}
}
PrepareNextSlot();
}
return nullptr;
}
SUnit* R600SchedStrategy::pickOther(int QID) {
SUnit *SU = nullptr;
std::vector<SUnit *> &AQ = Available[QID];
if (AQ.empty()) {
MoveUnits(Pending[QID], AQ);
}
if (!AQ.empty()) {
SU = AQ.back();
AQ.resize(AQ.size() - 1);
}
return SU;
}