mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-14 11:32:34 +00:00
Factor the calculation details for PostDomTree out of PostDominators.cpp and
into a separate header file. Next step: merging PostDominatorCalculation.h with DominatorCalculation.h. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42251 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
eefb31094f
commit
04fa569320
@ -29,7 +29,7 @@ struct PostDominatorTree : public DominatorTreeBase {
|
||||
|
||||
virtual bool runOnFunction(Function &F) {
|
||||
reset(); // Reset from the last time we were run...
|
||||
calculate(F);
|
||||
PDTcalculate(*this, F);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -37,11 +37,13 @@ struct PostDominatorTree : public DominatorTreeBase {
|
||||
AU.setPreservesAll();
|
||||
}
|
||||
private:
|
||||
void calculate(Function &F);
|
||||
unsigned DFSPass(BasicBlock *V, unsigned N);
|
||||
void Compress(BasicBlock *V, InfoRec &VInfo);
|
||||
BasicBlock *Eval(BasicBlock *V);
|
||||
void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
|
||||
friend void PDTcalculate(PostDominatorTree& PDT, Function &F);
|
||||
friend void PDTCompress(PostDominatorTree& PDT, BasicBlock *V,
|
||||
InfoRec &VInfo);
|
||||
friend BasicBlock *PDTEval(PostDominatorTree& PDT, BasicBlock *V);
|
||||
friend void PDTLink(PostDominatorTree& PDT,BasicBlock *V,
|
||||
BasicBlock *W, InfoRec &WInfo);
|
||||
};
|
||||
|
||||
|
||||
|
148
lib/Analysis/PostDominatorCalculation.h
Normal file
148
lib/Analysis/PostDominatorCalculation.h
Normal file
@ -0,0 +1,148 @@
|
||||
//==- PostDominatorCalculation.h - Post-Dominator Calculation ----*- C++ -*-==//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file was developed by Owen Anderson and is distributed under
|
||||
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// PostDominatorTree calculation implementation.
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_POST_DOMINATOR_CALCULATION_H
|
||||
#define LLVM_ANALYSIS_POST_DOMINATOR_CALCULATION_H
|
||||
|
||||
#include "llvm/Analysis/PostDominators.h"
|
||||
|
||||
namespace llvm {
|
||||
|
||||
void PDTCompress(PostDominatorTree& PDT, BasicBlock *V,
|
||||
PostDominatorTree::InfoRec &VInfo) {
|
||||
BasicBlock *VAncestor = VInfo.Ancestor;
|
||||
PostDominatorTree::InfoRec &VAInfo = PDT.Info[VAncestor];
|
||||
if (VAInfo.Ancestor == 0)
|
||||
return;
|
||||
|
||||
PDTCompress(PDT, VAncestor, VAInfo);
|
||||
|
||||
BasicBlock *VAncestorLabel = VAInfo.Label;
|
||||
BasicBlock *VLabel = VInfo.Label;
|
||||
if (PDT.Info[VAncestorLabel].Semi < PDT.Info[VLabel].Semi)
|
||||
VInfo.Label = VAncestorLabel;
|
||||
|
||||
VInfo.Ancestor = VAInfo.Ancestor;
|
||||
}
|
||||
|
||||
BasicBlock *PDTEval(PostDominatorTree& PDT, BasicBlock *V) {
|
||||
PostDominatorTree::InfoRec &VInfo = PDT.Info[V];
|
||||
|
||||
// Higher-complexity but faster implementation
|
||||
if (VInfo.Ancestor == 0)
|
||||
return V;
|
||||
PDTCompress(PDT, V, VInfo);
|
||||
return VInfo.Label;
|
||||
}
|
||||
|
||||
void PDTLink(PostDominatorTree& PDT, BasicBlock *V, BasicBlock *W,
|
||||
PostDominatorTree::InfoRec &WInfo) {
|
||||
// Higher-complexity but faster implementation
|
||||
WInfo.Ancestor = V;
|
||||
}
|
||||
|
||||
void PDTcalculate(PostDominatorTree& PDT, Function &F) {
|
||||
// Step #0: Scan the function looking for the root nodes of the post-dominance
|
||||
// relationships. These blocks, which have no successors, end with return and
|
||||
// unwind instructions.
|
||||
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
||||
TerminatorInst *Insn = I->getTerminator();
|
||||
if (Insn->getNumSuccessors() == 0) {
|
||||
// Unreachable block is not a root node.
|
||||
if (!isa<UnreachableInst>(Insn))
|
||||
PDT.Roots.push_back(I);
|
||||
}
|
||||
|
||||
// Prepopulate maps so that we don't get iterator invalidation issues later.
|
||||
PDT.IDoms[I] = 0;
|
||||
PDT.DomTreeNodes[I] = 0;
|
||||
}
|
||||
|
||||
PDT.Vertex.push_back(0);
|
||||
|
||||
// Step #1: Number blocks in depth-first order and initialize variables used
|
||||
// in later stages of the algorithm.
|
||||
unsigned N = 0;
|
||||
for (unsigned i = 0, e = PDT.Roots.size(); i != e; ++i)
|
||||
N = PDT.DFSPass(PDT.Roots[i], N);
|
||||
|
||||
for (unsigned i = N; i >= 2; --i) {
|
||||
BasicBlock *W = PDT.Vertex[i];
|
||||
PostDominatorTree::InfoRec &WInfo = PDT.Info[W];
|
||||
|
||||
// Step #2: Calculate the semidominators of all vertices
|
||||
for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
|
||||
if (PDT.Info.count(*SI)) { // Only if this predecessor is reachable!
|
||||
unsigned SemiU = PDT.Info[PDTEval(PDT, *SI)].Semi;
|
||||
if (SemiU < WInfo.Semi)
|
||||
WInfo.Semi = SemiU;
|
||||
}
|
||||
|
||||
PDT.Info[PDT.Vertex[WInfo.Semi]].Bucket.push_back(W);
|
||||
|
||||
BasicBlock *WParent = WInfo.Parent;
|
||||
PDTLink(PDT, WParent, W, WInfo);
|
||||
|
||||
// Step #3: Implicitly define the immediate dominator of vertices
|
||||
std::vector<BasicBlock*> &WParentBucket = PDT.Info[WParent].Bucket;
|
||||
while (!WParentBucket.empty()) {
|
||||
BasicBlock *V = WParentBucket.back();
|
||||
WParentBucket.pop_back();
|
||||
BasicBlock *U = PDTEval(PDT, V);
|
||||
PDT.IDoms[V] = PDT.Info[U].Semi < PDT.Info[V].Semi ? U : WParent;
|
||||
}
|
||||
}
|
||||
|
||||
// Step #4: Explicitly define the immediate dominator of each vertex
|
||||
for (unsigned i = 2; i <= N; ++i) {
|
||||
BasicBlock *W = PDT.Vertex[i];
|
||||
BasicBlock *&WIDom = PDT.IDoms[W];
|
||||
if (WIDom != PDT.Vertex[PDT.Info[W].Semi])
|
||||
WIDom = PDT.IDoms[WIDom];
|
||||
}
|
||||
|
||||
if (PDT.Roots.empty()) return;
|
||||
|
||||
// Add a node for the root. This node might be the actual root, if there is
|
||||
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
|
||||
// which postdominates all real exits if there are multiple exit blocks.
|
||||
BasicBlock *Root = PDT.Roots.size() == 1 ? PDT.Roots[0] : 0;
|
||||
PDT.DomTreeNodes[Root] = PDT.RootNode = new DomTreeNode(Root, 0);
|
||||
|
||||
// Loop over all of the reachable blocks in the function...
|
||||
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
||||
if (BasicBlock *ImmPostDom = PDT.getIDom(I)) { // Reachable block.
|
||||
DomTreeNode *&BBNode = PDT.DomTreeNodes[I];
|
||||
if (!BBNode) { // Haven't calculated this node yet?
|
||||
// Get or calculate the node for the immediate dominator
|
||||
DomTreeNode *IPDomNode = PDT.getNodeForBlock(ImmPostDom);
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
DomTreeNode *C = new DomTreeNode(I, IPDomNode);
|
||||
PDT.DomTreeNodes[I] = C;
|
||||
BBNode = IPDomNode->addChild(C);
|
||||
}
|
||||
}
|
||||
|
||||
// Free temporary memory used to construct idom's
|
||||
PDT.IDoms.clear();
|
||||
PDT.Info.clear();
|
||||
std::vector<BasicBlock*>().swap(PDT.Vertex);
|
||||
|
||||
// Start out with the DFS numbers being invalid. Let them be computed if
|
||||
// demanded.
|
||||
PDT.DFSInfoValid = false;
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
@ -16,6 +16,7 @@
|
||||
#include "llvm/Support/CFG.h"
|
||||
#include "llvm/ADT/DepthFirstIterator.h"
|
||||
#include "llvm/ADT/SetOperations.h"
|
||||
#include "PostDominatorCalculation.h"
|
||||
using namespace llvm;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
@ -72,148 +73,6 @@ unsigned PostDominatorTree::DFSPass(BasicBlock *V, unsigned N) {
|
||||
return N;
|
||||
}
|
||||
|
||||
void PostDominatorTree::Compress(BasicBlock *V, InfoRec &VInfo) {
|
||||
BasicBlock *VAncestor = VInfo.Ancestor;
|
||||
InfoRec &VAInfo = Info[VAncestor];
|
||||
if (VAInfo.Ancestor == 0)
|
||||
return;
|
||||
|
||||
Compress(VAncestor, VAInfo);
|
||||
|
||||
BasicBlock *VAncestorLabel = VAInfo.Label;
|
||||
BasicBlock *VLabel = VInfo.Label;
|
||||
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
|
||||
VInfo.Label = VAncestorLabel;
|
||||
|
||||
VInfo.Ancestor = VAInfo.Ancestor;
|
||||
}
|
||||
|
||||
BasicBlock *PostDominatorTree::Eval(BasicBlock *V) {
|
||||
InfoRec &VInfo = Info[V];
|
||||
|
||||
// Higher-complexity but faster implementation
|
||||
if (VInfo.Ancestor == 0)
|
||||
return V;
|
||||
Compress(V, VInfo);
|
||||
return VInfo.Label;
|
||||
}
|
||||
|
||||
void PostDominatorTree::Link(BasicBlock *V, BasicBlock *W,
|
||||
InfoRec &WInfo) {
|
||||
// Higher-complexity but faster implementation
|
||||
WInfo.Ancestor = V;
|
||||
}
|
||||
|
||||
void PostDominatorTree::calculate(Function &F) {
|
||||
// Step #0: Scan the function looking for the root nodes of the post-dominance
|
||||
// relationships. These blocks, which have no successors, end with return and
|
||||
// unwind instructions.
|
||||
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
||||
TerminatorInst *Insn = I->getTerminator();
|
||||
if (Insn->getNumSuccessors() == 0) {
|
||||
// Unreachable block is not a root node.
|
||||
if (!isa<UnreachableInst>(Insn))
|
||||
Roots.push_back(I);
|
||||
}
|
||||
|
||||
// Prepopulate maps so that we don't get iterator invalidation issues later.
|
||||
IDoms[I] = 0;
|
||||
DomTreeNodes[I] = 0;
|
||||
}
|
||||
|
||||
Vertex.push_back(0);
|
||||
|
||||
// Step #1: Number blocks in depth-first order and initialize variables used
|
||||
// in later stages of the algorithm.
|
||||
unsigned N = 0;
|
||||
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
||||
N = DFSPass(Roots[i], N);
|
||||
|
||||
for (unsigned i = N; i >= 2; --i) {
|
||||
BasicBlock *W = Vertex[i];
|
||||
InfoRec &WInfo = Info[W];
|
||||
|
||||
// Step #2: Calculate the semidominators of all vertices
|
||||
for (succ_iterator SI = succ_begin(W), SE = succ_end(W); SI != SE; ++SI)
|
||||
if (Info.count(*SI)) { // Only if this predecessor is reachable!
|
||||
unsigned SemiU = Info[Eval(*SI)].Semi;
|
||||
if (SemiU < WInfo.Semi)
|
||||
WInfo.Semi = SemiU;
|
||||
}
|
||||
|
||||
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
|
||||
|
||||
BasicBlock *WParent = WInfo.Parent;
|
||||
Link(WParent, W, WInfo);
|
||||
|
||||
// Step #3: Implicitly define the immediate dominator of vertices
|
||||
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
|
||||
while (!WParentBucket.empty()) {
|
||||
BasicBlock *V = WParentBucket.back();
|
||||
WParentBucket.pop_back();
|
||||
BasicBlock *U = Eval(V);
|
||||
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
|
||||
}
|
||||
}
|
||||
|
||||
// Step #4: Explicitly define the immediate dominator of each vertex
|
||||
for (unsigned i = 2; i <= N; ++i) {
|
||||
BasicBlock *W = Vertex[i];
|
||||
BasicBlock *&WIDom = IDoms[W];
|
||||
if (WIDom != Vertex[Info[W].Semi])
|
||||
WIDom = IDoms[WIDom];
|
||||
}
|
||||
|
||||
if (Roots.empty()) return;
|
||||
|
||||
// Add a node for the root. This node might be the actual root, if there is
|
||||
// one exit block, or it may be the virtual exit (denoted by (BasicBlock *)0)
|
||||
// which postdominates all real exits if there are multiple exit blocks.
|
||||
BasicBlock *Root = Roots.size() == 1 ? Roots[0] : 0;
|
||||
DomTreeNodes[Root] = RootNode = new DomTreeNode(Root, 0);
|
||||
|
||||
// Loop over all of the reachable blocks in the function...
|
||||
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
|
||||
if (BasicBlock *ImmPostDom = getIDom(I)) { // Reachable block.
|
||||
DomTreeNode *&BBNode = DomTreeNodes[I];
|
||||
if (!BBNode) { // Haven't calculated this node yet?
|
||||
// Get or calculate the node for the immediate dominator
|
||||
DomTreeNode *IPDomNode = getNodeForBlock(ImmPostDom);
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
DomTreeNode *C = new DomTreeNode(I, IPDomNode);
|
||||
DomTreeNodes[I] = C;
|
||||
BBNode = IPDomNode->addChild(C);
|
||||
}
|
||||
}
|
||||
|
||||
// Free temporary memory used to construct idom's
|
||||
IDoms.clear();
|
||||
Info.clear();
|
||||
std::vector<BasicBlock*>().swap(Vertex);
|
||||
|
||||
// Start out with the DFS numbers being invalid. Let them be computed if
|
||||
// demanded.
|
||||
DFSInfoValid = false;
|
||||
}
|
||||
|
||||
|
||||
DomTreeNode *PostDominatorTree::getNodeForBlock(BasicBlock *BB) {
|
||||
DomTreeNode *&BBNode = DomTreeNodes[BB];
|
||||
if (BBNode) return BBNode;
|
||||
|
||||
// Haven't calculated this node yet? Get or calculate the node for the
|
||||
// immediate postdominator.
|
||||
BasicBlock *IPDom = getIDom(BB);
|
||||
DomTreeNode *IPDomNode = getNodeForBlock(IPDom);
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
DomTreeNode *C = new DomTreeNode(BB, IPDomNode);
|
||||
return DomTreeNodes[BB] = IPDomNode->addChild(C);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// PostDominanceFrontier Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
Loading…
Reference in New Issue
Block a user