More working CellSPU test cases:

- call.ll: Function call
- ctpop.ll: Count population
- dp_farith.ll: DP arithmetic
- eqv.ll: Equivalence primitives
- fcmp.ll: SP comparisons
- fdiv.ll: SP division
- fneg-fabs.ll: SP negation, aboslute value
- int2fp.ll: Integer -> SP conversion
- rotate_ops.ll: Rotation primitives
- select_bits.ll: (a & c) | (b & ~c) bit selection
- shift_ops.ll: Shift primitives
- sp_farith.ll: SP arithmentic


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@45217 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Scott Michel 2007-12-19 20:50:49 +00:00
parent 170783a5fc
commit 0a92af487b
12 changed files with 1164 additions and 0 deletions

View File

@ -0,0 +1,20 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep brsl %t1.s | count 1 &&
; RUN: grep brasl %t1.s | count 1
target datalayout = "E-p:32:32:128-f64:64:128-f32:32:128-i64:32:128-i32:32:128-i16:16:128-i8:8:128-i1:8:128-a0:0:128-v128:128:128-s0:128:128"
target triple = "spu"
define i32 @main() {
entry:
%a = call i32 @stub_1(i32 1, float 0x400921FA00000000)
call void @extern_stub_1(i32 %a, i32 4)
ret i32 %a
}
declare void @extern_stub_1(i32, i32)
define i32 @stub_1(i32 %x, float %y) {
entry:
ret i32 0
}

View File

@ -0,0 +1,28 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep cntb %t1.s | count 3 &&
; RUN: grep andi %t1.s | count 3 &&
; RUN: grep rotmi %t1.s | count 2 &&
; RUN: grep rothmi %t1.s | count 1
declare i32 @llvm.ctpop.i8(i8)
declare i32 @llvm.ctpop.i16(i16)
declare i32 @llvm.ctpop.i32(i32)
define i32 @test_i8(i8 %X) {
call i32 @llvm.ctpop.i8(i8 %X)
%Y = bitcast i32 %1 to i32
ret i32 %Y
}
define i32 @test_i16(i16 %X) {
call i32 @llvm.ctpop.i16(i16 %X)
%Y = bitcast i32 %1 to i32
ret i32 %Y
}
define i32 @test_i32(i32 %X) {
call i32 @llvm.ctpop.i32(i32 %X)
%Y = bitcast i32 %1 to i32
ret i32 %Y
}

View File

@ -0,0 +1,100 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep dfa %t1.s | count 2 &&
; RUN: grep dfs %t1.s | count 2 &&
; RUN: grep dfm %t1.s | count 6 &&
; RUN: grep dfma %t1.s | count 2 &&
; RUN: grep dfms %t1.s | count 2 &&
; RUN: grep dfnms %t1.s | count 4
;
; This file includes double precision floating point arithmetic instructions
define double @fadd(double %arg1, double %arg2) {
%A = add double %arg1, %arg2
ret double %A
}
define <2 x double> @fadd_vec(<2 x double> %arg1, <2 x double> %arg2) {
%A = add <2 x double> %arg1, %arg2
ret <2 x double> %A
}
define double @fsub(double %arg1, double %arg2) {
%A = sub double %arg1, %arg2
ret double %A
}
define <2 x double> @fsub_vec(<2 x double> %arg1, <2 x double> %arg2) {
%A = sub <2 x double> %arg1, %arg2
ret <2 x double> %A
}
define double @fmul(double %arg1, double %arg2) {
%A = mul double %arg1, %arg2
ret double %A
}
define <2 x double> @fmul_vec(<2 x double> %arg1, <2 x double> %arg2) {
%A = mul <2 x double> %arg1, %arg2
ret <2 x double> %A
}
define double @fma(double %arg1, double %arg2, double %arg3) {
%A = mul double %arg1, %arg2
%B = add double %A, %arg3
ret double %B
}
define <2 x double> @fma_vec(<2 x double> %arg1, <2 x double> %arg2, <2 x double> %arg3) {
%A = mul <2 x double> %arg1, %arg2
%B = add <2 x double> %A, %arg3
ret <2 x double> %B
}
define double @fms(double %arg1, double %arg2, double %arg3) {
%A = mul double %arg1, %arg2
%B = sub double %A, %arg3
ret double %B
}
define <2 x double> @fms_vec(<2 x double> %arg1, <2 x double> %arg2, <2 x double> %arg3) {
%A = mul <2 x double> %arg1, %arg2
%B = sub <2 x double> %A, %arg3
ret <2 x double> %B
}
; - (a * b - c)
define double @d_fnms_1(double %arg1, double %arg2, double %arg3) {
%A = mul double %arg1, %arg2
%B = sub double %A, %arg3
%C = sub double -0.000000e+00, %B ; <double> [#uses=1]
ret double %C
}
; Annother way of getting fnms
; - ( a * b ) + c => c - (a * b)
define double @d_fnms_2(double %arg1, double %arg2, double %arg3) {
%A = mul double %arg1, %arg2
%B = sub double %arg3, %A
ret double %B
}
; FNMS: - (a * b - c) => c - (a * b)
define <2 x double> @d_fnms_vec_1(<2 x double> %arg1, <2 x double> %arg2, <2 x double> %arg3) {
%A = mul <2 x double> %arg1, %arg2
%B = sub <2 x double> %arg3, %A ;
ret <2 x double> %B
}
; Another way to get fnms using a constant vector
; - ( a * b - c)
define <2 x double> @d_fnms_vec_2(<2 x double> %arg1, <2 x double> %arg2, <2 x double> %arg3) {
%A = mul <2 x double> %arg1, %arg2 ; <<2 x double>> [#uses=1]
%B = sub <2 x double> %A, %arg3 ; <<2 x double>> [#uses=1]
%C = sub <2 x double> < double -0.00000e+00, double -0.00000e+00 >, %B
ret <2 x double> %C
}
;define double @fdiv_1(double %arg1, double %arg2) {
; %A = fdiv double %arg1, %arg2 ; <double> [#uses=1]
; ret double %A
;}

150
test/CodeGen/CellSPU/eqv.ll Normal file
View File

@ -0,0 +1,150 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep eqv %t1.s | count 18 &&
; RUN: grep xshw %t1.s | count 6 &&
; RUN: grep xsbh %t1.s | count 3 &&
; RUN: grep andi %t1.s | count 3
; Test the 'eqv' instruction, whose boolean expression is:
; (a & b) | (~a & ~b), which simplifies to
; (a & b) | ~(a | b)
; Alternatively, a ^ ~b, which the compiler will also match.
; ModuleID = 'eqv.bc'
define <4 x i32> @equiv_v4i32_1(<4 x i32> %arg1, <4 x i32> %arg2) {
%A = and <4 x i32> %arg1, %arg2 ; <<4 x i32>> [#uses=1]
%B = or <4 x i32> %arg1, %arg2 ; <<4 x i32>> [#uses=1]
%Bnot = xor <4 x i32> %B, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%C = or <4 x i32> %A, %Bnot ; <<4 x i32>> [#uses=1]
ret <4 x i32> %C
}
define <4 x i32> @equiv_v4i32_2(<4 x i32> %arg1, <4 x i32> %arg2) {
%B = or <4 x i32> %arg1, %arg2 ; <<4 x i32>> [#uses=1]
%Bnot = xor <4 x i32> %B, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%A = and <4 x i32> %arg1, %arg2 ; <<4 x i32>> [#uses=1]
%C = or <4 x i32> %A, %Bnot ; <<4 x i32>> [#uses=1]
ret <4 x i32> %C
}
define <4 x i32> @equiv_v4i32_3(<4 x i32> %arg1, <4 x i32> %arg2) {
%B = or <4 x i32> %arg1, %arg2 ; <<4 x i32>> [#uses=1]
%A = and <4 x i32> %arg1, %arg2 ; <<4 x i32>> [#uses=1]
%Bnot = xor <4 x i32> %B, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%C = or <4 x i32> %A, %Bnot ; <<4 x i32>> [#uses=1]
ret <4 x i32> %C
}
define <4 x i32> @equiv_v4i32_4(<4 x i32> %arg1, <4 x i32> %arg2) {
%arg2not = xor <4 x i32> %arg2, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%C = xor <4 x i32> %arg1, %arg2not
ret <4 x i32> %C
}
define i32 @equiv_i32_1(i32 %arg1, i32 %arg2) {
%A = and i32 %arg1, %arg2 ; <i32> [#uses=1]
%B = or i32 %arg1, %arg2 ; <i32> [#uses=1]
%Bnot = xor i32 %B, -1 ; <i32> [#uses=1]
%C = or i32 %A, %Bnot ; <i32> [#uses=1]
ret i32 %C
}
define i32 @equiv_i32_2(i32 %arg1, i32 %arg2) {
%B = or i32 %arg1, %arg2 ; <i32> [#uses=1]
%Bnot = xor i32 %B, -1 ; <i32> [#uses=1]
%A = and i32 %arg1, %arg2 ; <i32> [#uses=1]
%C = or i32 %A, %Bnot ; <i32> [#uses=1]
ret i32 %C
}
define i32 @equiv_i32_3(i32 %arg1, i32 %arg2) {
%B = or i32 %arg1, %arg2 ; <i32> [#uses=1]
%A = and i32 %arg1, %arg2 ; <i32> [#uses=1]
%Bnot = xor i32 %B, -1 ; <i32> [#uses=1]
%C = or i32 %A, %Bnot ; <i32> [#uses=1]
ret i32 %C
}
define i32 @equiv_i32_4(i32 %arg1, i32 %arg2) {
%arg2not = xor i32 %arg2, -1
%C = xor i32 %arg1, %arg2not
ret i32 %C
}
define i32 @equiv_i32_5(i32 %arg1, i32 %arg2) {
%arg1not = xor i32 %arg1, -1
%C = xor i32 %arg2, %arg1not
ret i32 %C
}
define i16 @equiv_i16_1(i16 signext %arg1, i16 signext %arg2) signext {
%A = and i16 %arg1, %arg2 ; <i16> [#uses=1]
%B = or i16 %arg1, %arg2 ; <i16> [#uses=1]
%Bnot = xor i16 %B, -1 ; <i16> [#uses=1]
%C = or i16 %A, %Bnot ; <i16> [#uses=1]
ret i16 %C
}
define i16 @equiv_i16_2(i16 signext %arg1, i16 signext %arg2) signext {
%B = or i16 %arg1, %arg2 ; <i16> [#uses=1]
%Bnot = xor i16 %B, -1 ; <i16> [#uses=1]
%A = and i16 %arg1, %arg2 ; <i16> [#uses=1]
%C = or i16 %A, %Bnot ; <i16> [#uses=1]
ret i16 %C
}
define i16 @equiv_i16_3(i16 signext %arg1, i16 signext %arg2) signext {
%B = or i16 %arg1, %arg2 ; <i16> [#uses=1]
%A = and i16 %arg1, %arg2 ; <i16> [#uses=1]
%Bnot = xor i16 %B, -1 ; <i16> [#uses=1]
%C = or i16 %A, %Bnot ; <i16> [#uses=1]
ret i16 %C
}
define i8 @equiv_i8_1(i8 signext %arg1, i8 signext %arg2) signext {
%A = and i8 %arg1, %arg2 ; <i8> [#uses=1]
%B = or i8 %arg1, %arg2 ; <i8> [#uses=1]
%Bnot = xor i8 %B, -1 ; <i8> [#uses=1]
%C = or i8 %A, %Bnot ; <i8> [#uses=1]
ret i8 %C
}
define i8 @equiv_i8_2(i8 signext %arg1, i8 signext %arg2) signext {
%B = or i8 %arg1, %arg2 ; <i8> [#uses=1]
%Bnot = xor i8 %B, -1 ; <i8> [#uses=1]
%A = and i8 %arg1, %arg2 ; <i8> [#uses=1]
%C = or i8 %A, %Bnot ; <i8> [#uses=1]
ret i8 %C
}
define i8 @equiv_i8_3(i8 signext %arg1, i8 signext %arg2) signext {
%B = or i8 %arg1, %arg2 ; <i8> [#uses=1]
%A = and i8 %arg1, %arg2 ; <i8> [#uses=1]
%Bnot = xor i8 %B, -1 ; <i8> [#uses=1]
%C = or i8 %A, %Bnot ; <i8> [#uses=1]
ret i8 %C
}
define i8 @equiv_u8_1(i8 zeroext %arg1, i8 zeroext %arg2) zeroext {
%A = and i8 %arg1, %arg2 ; <i8> [#uses=1]
%B = or i8 %arg1, %arg2 ; <i8> [#uses=1]
%Bnot = xor i8 %B, -1 ; <i8> [#uses=1]
%C = or i8 %A, %Bnot ; <i8> [#uses=1]
ret i8 %C
}
define i8 @equiv_u8_2(i8 zeroext %arg1, i8 zeroext %arg2) zeroext {
%B = or i8 %arg1, %arg2 ; <i8> [#uses=1]
%Bnot = xor i8 %B, -1 ; <i8> [#uses=1]
%A = and i8 %arg1, %arg2 ; <i8> [#uses=1]
%C = or i8 %A, %Bnot ; <i8> [#uses=1]
ret i8 %C
}
define i8 @equiv_u8_3(i8 zeroext %arg1, i8 zeroext %arg2) zeroext {
%B = or i8 %arg1, %arg2 ; <i8> [#uses=1]
%A = and i8 %arg1, %arg2 ; <i8> [#uses=1]
%Bnot = xor i8 %B, -1 ; <i8> [#uses=1]
%C = or i8 %A, %Bnot ; <i8> [#uses=1]
ret i8 %C
}

View File

@ -0,0 +1,20 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep fceq %t1.s | count 1 &&
; RUN: grep fcmeq %t1.s | count 1
;
; This file includes standard floating point arithmetic instructions
declare double @fabs(double)
declare float @fabsf(float)
define i1 @fcmp_eq(float %arg1, float %arg2) {
%A = fcmp oeq float %arg1, %arg2 ; <float> [#uses=1]
ret i1 %A
}
define i1 @fcmp_mag_eq(float %arg1, float %arg2) {
%A = call float @fabsf(float %arg1) ; <float> [#uses=1]
%B = call float @fabsf(float %arg2) ; <float> [#uses=1]
%C = fcmp oeq float %A, %B ; <float> [#uses=1]
ret i1 %C
}

View File

@ -0,0 +1,18 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep frest %t1.s | count 2 &&
; RUN: grep fi %t1.s | count 2 &&
; RUN: grep fm %t1.s | count 4 &&
; RUN: grep fma %t1.s | count 2 &&
; RUN: grep fnms %t1.s | count 2
;
; This file includes standard floating point arithmetic instructions
define float @fdiv32(float %arg1, float %arg2) {
%A = fdiv float %arg1, %arg2
ret float %A
}
define <4 x float> @fdiv_v4f32(<4 x float> %arg1, <4 x float> %arg2) {
%A = fdiv <4 x float> %arg1, %arg2
ret <4 x float> %A
}

View File

@ -0,0 +1,41 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep fsmbi %t1.s | count 3 &&
; RUN: grep 32768 %t1.s | count 2 &&
; RUN: grep xor %t1.s | count 4 &&
; RUN: grep and %t1.s | count 5 &&
; RUN: grep andbi %t1.s | count 3
define double @fneg_dp(double %X) {
%Y = sub double -0.000000e+00, %X
ret double %Y
}
define <2 x double> @fneg_dp_vec(<2 x double> %X) {
%Y = sub <2 x double> < double -0.0000e+00, double -0.0000e+00 >, %X
ret <2 x double> %Y
}
define float @fneg_sp(float %X) {
%Y = sub float -0.000000e+00, %X
ret float %Y
}
define <4 x float> @fneg_sp_vec(<4 x float> %X) {
%Y = sub <4 x float> <float -0.000000e+00, float -0.000000e+00,
float -0.000000e+00, float -0.000000e+00>, %X
ret <4 x float> %Y
}
declare double @fabs(double)
declare float @fabsf(float)
define double @fabs_dp(double %X) {
%Y = call double @fabs( double %X ) ; <double> [#uses=1]
ret double %Y
}
define float @fabs_sp(float %X) {
%Y = call float @fabsf( float %X ) ; <float> [#uses=1]
ret float %Y
}

View File

@ -0,0 +1,38 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep csflt %t1.s | count 5 &&
; RUN: grep cuflt %t1.s | count 1 &&
; RUN: grep xshw %t1.s | count 2 &&
; RUN: grep xsbh %t1.s | count 1 &&
; RUN: grep and %t1.s | count 2 &&
; RUN: grep andi %t1.s | count 1 &&
; RUN: grep ila %t1.s | count 1
define float @sitofp_i32(i32 %arg1) {
%A = sitofp i32 %arg1 to float ; <float> [#uses=1]
ret float %A
}
define float @uitofp_u32(i32 %arg1) {
%A = uitofp i32 %arg1 to float ; <float> [#uses=1]
ret float %A
}
define float @sitofp_i16(i16 %arg1) {
%A = sitofp i16 %arg1 to float ; <float> [#uses=1]
ret float %A
}
define float @uitofp_i16(i16 %arg1) {
%A = uitofp i16 %arg1 to float ; <float> [#uses=1]
ret float %A
}
define float @sitofp_i8(i8 %arg1) {
%A = sitofp i8 %arg1 to float ; <float> [#uses=1]
ret float %A
}
define float @uitofp_i8(i8 %arg1) {
%A = uitofp i8 %arg1 to float ; <float> [#uses=1]
ret float %A
}

View File

@ -0,0 +1,157 @@
; RUN: llvm-as -o - %s | llc -march=cellspu -f -o %t1.s
; RUN: grep rot %t1.s | count 85
; RUN: grep roth %t1.s | count 8
; RUN: grep roti.*5 %t1.s | count 1
; RUN: grep roti.*27 %t1.s | count 1
; RUN grep rothi.*5 %t1.s | count 2
; RUN grep rothi.*11 %t1.s | count 1
; RUN grep rothi.*,.3 %t1.s | count 1
; RUN: grep andhi %t1.s | count 4
; RUN: grep shlhi %t1.s | count 4
; Vector rotates are not currently supported in gcc or llvm assembly. These are
; not tested.
; 32-bit rotates:
define i32 @rotl32_1a(i32 %arg1, i8 %arg2) {
%tmp1 = zext i8 %arg2 to i32 ; <i32> [#uses=1]
%B = shl i32 %arg1, %tmp1 ; <i32> [#uses=1]
%arg22 = sub i8 32, %arg2 ; <i8> [#uses=1]
%tmp2 = zext i8 %arg22 to i32 ; <i32> [#uses=1]
%C = lshr i32 %arg1, %tmp2 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
define i32 @rotl32_1b(i32 %arg1, i16 %arg2) {
%tmp1 = zext i16 %arg2 to i32 ; <i32> [#uses=1]
%B = shl i32 %arg1, %tmp1 ; <i32> [#uses=1]
%arg22 = sub i16 32, %arg2 ; <i8> [#uses=1]
%tmp2 = zext i16 %arg22 to i32 ; <i32> [#uses=1]
%C = lshr i32 %arg1, %tmp2 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
define i32 @rotl32_2(i32 %arg1, i32 %arg2) {
%B = shl i32 %arg1, %arg2 ; <i32> [#uses=1]
%tmp1 = sub i32 32, %arg2 ; <i32> [#uses=1]
%C = lshr i32 %arg1, %tmp1 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
define i32 @rotl32_3(i32 %arg1, i32 %arg2) {
%tmp1 = sub i32 32, %arg2 ; <i32> [#uses=1]
%B = shl i32 %arg1, %arg2 ; <i32> [#uses=1]
%C = lshr i32 %arg1, %tmp1 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
define i32 @rotl32_4(i32 %arg1, i32 %arg2) {
%tmp1 = sub i32 32, %arg2 ; <i32> [#uses=1]
%C = lshr i32 %arg1, %tmp1 ; <i32> [#uses=1]
%B = shl i32 %arg1, %arg2 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
define i32 @rotr32_1(i32 %A, i8 %Amt) {
%tmp1 = zext i8 %Amt to i32 ; <i32> [#uses=1]
%B = lshr i32 %A, %tmp1 ; <i32> [#uses=1]
%Amt2 = sub i8 32, %Amt ; <i8> [#uses=1]
%tmp2 = zext i8 %Amt2 to i32 ; <i32> [#uses=1]
%C = shl i32 %A, %tmp2 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
define i32 @rotr32_2(i32 %A, i8 %Amt) {
%Amt2 = sub i8 32, %Amt ; <i8> [#uses=1]
%tmp1 = zext i8 %Amt to i32 ; <i32> [#uses=1]
%B = lshr i32 %A, %tmp1 ; <i32> [#uses=1]
%tmp2 = zext i8 %Amt2 to i32 ; <i32> [#uses=1]
%C = shl i32 %A, %tmp2 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
; Rotate left with immediate
define i32 @rotli32(i32 %A) {
%B = shl i32 %A, 5 ; <i32> [#uses=1]
%C = lshr i32 %A, 27 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
; Rotate right with immediate
define i32 @rotri32(i32 %A) {
%B = lshr i32 %A, 5 ; <i32> [#uses=1]
%C = shl i32 %A, 27 ; <i32> [#uses=1]
%D = or i32 %B, %C ; <i32> [#uses=1]
ret i32 %D
}
; 16-bit rotates:
define i16 @rotr16_1(i16 %arg1, i8 %arg) {
%tmp1 = zext i8 %arg to i16 ; <i16> [#uses=1]
%B = lshr i16 %arg1, %tmp1 ; <i16> [#uses=1]
%arg2 = sub i8 16, %arg ; <i8> [#uses=1]
%tmp2 = zext i8 %arg2 to i16 ; <i16> [#uses=1]
%C = shl i16 %arg1, %tmp2 ; <i16> [#uses=1]
%D = or i16 %B, %C ; <i16> [#uses=1]
ret i16 %D
}
define i16 @rotr16_2(i16 %arg1, i16 %arg) {
%B = lshr i16 %arg1, %arg ; <i16> [#uses=1]
%tmp1 = sub i16 16, %arg ; <i16> [#uses=1]
%C = shl i16 %arg1, %tmp1 ; <i16> [#uses=1]
%D = or i16 %B, %C ; <i16> [#uses=1]
ret i16 %D
}
define i16 @rotli16(i16 %A) {
%B = shl i16 %A, 5 ; <i16> [#uses=1]
%C = lshr i16 %A, 11 ; <i16> [#uses=1]
%D = or i16 %B, %C ; <i16> [#uses=1]
ret i16 %D
}
define i16 @rotri16(i16 %A) {
%B = lshr i16 %A, 5 ; <i16> [#uses=1]
%C = shl i16 %A, 11 ; <i16> [#uses=1]
%D = or i16 %B, %C ; <i16> [#uses=1]
ret i16 %D
}
define i8 @rotl8(i8 %A, i8 %Amt) {
%B = shl i8 %A, %Amt ; <i8> [#uses=1]
%Amt2 = sub i8 8, %Amt ; <i8> [#uses=1]
%C = lshr i8 %A, %Amt2 ; <i8> [#uses=1]
%D = or i8 %B, %C ; <i8> [#uses=1]
ret i8 %D
}
define i8 @rotr8(i8 %A, i8 %Amt) {
%B = lshr i8 %A, %Amt ; <i8> [#uses=1]
%Amt2 = sub i8 8, %Amt ; <i8> [#uses=1]
%C = shl i8 %A, %Amt2 ; <i8> [#uses=1]
%D = or i8 %B, %C ; <i8> [#uses=1]
ret i8 %D
}
define i8 @rotli8(i8 %A) {
%B = shl i8 %A, 5 ; <i8> [#uses=1]
%C = lshr i8 %A, 3 ; <i8> [#uses=1]
%D = or i8 %B, %C ; <i8> [#uses=1]
ret i8 %D
}
define i8 @rotri8(i8 %A) {
%B = lshr i8 %A, 5 ; <i8> [#uses=1]
%C = shl i8 %A, 3 ; <i8> [#uses=1]
%D = or i8 %B, %C ; <i8> [#uses=1]
ret i8 %D
}

View File

@ -0,0 +1,294 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep selb %t1.s | count 160
; RUN: grep and %t1.s | count 2
; RUN: grep xsbh %t1.s | count 1
; RUN: grep xshw %t1.s | count 2
define <16 x i8> @selb_v16i8_1(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%A = xor <16 x i8> %arg3, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %A, %arg1 ; <<16 x i8>> [#uses=1]
%C = and <16 x i8> %arg2, %arg3 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_11(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%A = xor <16 x i8> %arg3, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %arg1, %A ; <<16 x i8>> [#uses=1]
%C = and <16 x i8> %arg3, %arg2 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_12(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%A = xor <16 x i8> %arg3, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %arg1, %A ; <<16 x i8>> [#uses=1]
%C = and <16 x i8> %arg2, %arg3 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_13(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%A = xor <16 x i8> %arg3, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %A, %arg1 ; <<16 x i8>> [#uses=1]
%C = and <16 x i8> %arg2, %arg3 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_2(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%A = xor <16 x i8> %arg1, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %A, %arg2 ; <<16 x i8>> [#uses=1]
%C = and <16 x i8> %arg3, %arg1 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_21(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%A = xor <16 x i8> %arg1, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %arg2, %A ; <<16 x i8>> [#uses=1]
%C = and <16 x i8> %arg3, %arg1 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_3(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%A = xor <16 x i8> %arg2, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %A, %arg1 ; <<16 x i8>> [#uses=1]
%C = and <16 x i8> %arg3, %arg2 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_4(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%C = and <16 x i8> %arg3, %arg2 ; <<16 x i8>> [#uses=1]
%A = xor <16 x i8> %arg2, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %A, %arg1 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_41(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%C = and <16 x i8> %arg2, %arg3 ; <<16 x i8>> [#uses=1]
%A = xor <16 x i8> %arg2, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %arg1, %A ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %C, %B ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_42(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%C = and <16 x i8> %arg2, %arg3 ; <<16 x i8>> [#uses=1]
%A = xor <16 x i8> %arg2, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %A, %arg1 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %C, %B ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <16 x i8> @selb_v16i8_5(<16 x i8> %arg1, <16 x i8> %arg2, <16 x i8> %arg3) {
%C = and <16 x i8> %arg2, %arg1 ; <<16 x i8>> [#uses=1]
%A = xor <16 x i8> %arg1, < i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1, i8 -1, i8 -1,
i8 -1, i8 -1, i8 -1, i8 -1 >
%B = and <16 x i8> %A, %arg3 ; <<16 x i8>> [#uses=1]
%D = or <16 x i8> %B, %C ; <<16 x i8>> [#uses=1]
ret <16 x i8> %D
}
define <8 x i16> @selb_v8i16_1(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%A = xor <8 x i16> %arg3, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %A, %arg1 ; <<8 x i16>> [#uses=1]
%C = and <8 x i16> %arg2, %arg3 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_11(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%A = xor <8 x i16> %arg3, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %arg1, %A ; <<8 x i16>> [#uses=1]
%C = and <8 x i16> %arg3, %arg2 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_12(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%A = xor <8 x i16> %arg3, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %arg1, %A ; <<8 x i16>> [#uses=1]
%C = and <8 x i16> %arg2, %arg3 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_13(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%A = xor <8 x i16> %arg3, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %A, %arg1 ; <<8 x i16>> [#uses=1]
%C = and <8 x i16> %arg2, %arg3 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_2(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%A = xor <8 x i16> %arg1, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %A, %arg2 ; <<8 x i16>> [#uses=1]
%C = and <8 x i16> %arg3, %arg1 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_21(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%A = xor <8 x i16> %arg1, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %arg2, %A ; <<8 x i16>> [#uses=1]
%C = and <8 x i16> %arg3, %arg1 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_3(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%A = xor <8 x i16> %arg2, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %A, %arg1 ; <<8 x i16>> [#uses=1]
%C = and <8 x i16> %arg3, %arg2 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_4(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%C = and <8 x i16> %arg3, %arg2 ; <<8 x i16>> [#uses=1]
%A = xor <8 x i16> %arg2, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %A, %arg1 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_41(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%C = and <8 x i16> %arg2, %arg3 ; <<8 x i16>> [#uses=1]
%A = xor <8 x i16> %arg2, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %arg1, %A ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %C, %B ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_42(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%C = and <8 x i16> %arg2, %arg3 ; <<8 x i16>> [#uses=1]
%A = xor <8 x i16> %arg2, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %A, %arg1 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %C, %B ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <8 x i16> @selb_v8i16_5(<8 x i16> %arg1, <8 x i16> %arg2, <8 x i16> %arg3) {
%C = and <8 x i16> %arg2, %arg1 ; <<8 x i16>> [#uses=1]
%A = xor <8 x i16> %arg1, < i16 -1, i16 -1, i16 -1, i16 -1, i16 -1, i16 -1,
i16 -1, i16 -1 >
%B = and <8 x i16> %A, %arg3 ; <<8 x i16>> [#uses=1]
%D = or <8 x i16> %B, %C ; <<8 x i16>> [#uses=1]
ret <8 x i16> %D
}
define <4 x i32> @selb_v4i32_1(<4 x i32> %arg1, <4 x i32> %arg2, <4 x i32> %arg3) {
%tmpnot = xor <4 x i32> %arg3, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%tmp2 = and <4 x i32> %tmpnot, %arg1 ; <<4 x i32>> [#uses=1]
%tmp5 = and <4 x i32> %arg2, %arg3 ; <<4 x i32>> [#uses=1]
%tmp6 = or <4 x i32> %tmp2, %tmp5 ; <<4 x i32>> [#uses=1]
ret <4 x i32> %tmp6
}
define <4 x i32> @selb_v4i32_2(<4 x i32> %arg1, <4 x i32> %arg2, <4 x i32> %arg3) {
%tmpnot = xor <4 x i32> %arg3, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%tmp2 = and <4 x i32> %tmpnot, %arg1 ; <<4 x i32>> [#uses=1]
%tmp5 = and <4 x i32> %arg2, %arg3 ; <<4 x i32>> [#uses=1]
%tmp6 = or <4 x i32> %tmp2, %tmp5 ; <<4 x i32>> [#uses=1]
ret <4 x i32> %tmp6
}
define <4 x i32> @selb_v4i32_3(<4 x i32> %arg1, <4 x i32> %arg2, <4 x i32> %arg3) {
%tmpnot = xor <4 x i32> %arg3, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%tmp2 = and <4 x i32> %tmpnot, %arg1 ; <<4 x i32>> [#uses=1]
%tmp5 = and <4 x i32> %arg3, %arg2 ; <<4 x i32>> [#uses=1]
%tmp6 = or <4 x i32> %tmp2, %tmp5 ; <<4 x i32>> [#uses=1]
ret <4 x i32> %tmp6
}
define <4 x i32> @selb_v4i32_4(<4 x i32> %arg1, <4 x i32> %arg2, <4 x i32> %arg3) {
%tmp2 = and <4 x i32> %arg3, %arg2 ; <<4 x i32>> [#uses=1]
%tmp3not = xor <4 x i32> %arg3, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%tmp5 = and <4 x i32> %tmp3not, %arg1 ; <<4 x i32>> [#uses=1]
%tmp6 = or <4 x i32> %tmp2, %tmp5 ; <<4 x i32>> [#uses=1]
ret <4 x i32> %tmp6
}
define <4 x i32> @selb_v4i32_5(<4 x i32> %arg1, <4 x i32> %arg2, <4 x i32> %arg3) {
%tmp2 = and <4 x i32> %arg3, %arg2 ; <<4 x i32>> [#uses=1]
%tmp3not = xor <4 x i32> %arg3, < i32 -1, i32 -1, i32 -1, i32 -1 > ; <<4 x i32>> [#uses=1]
%tmp5 = and <4 x i32> %tmp3not, %arg1 ; <<4 x i32>> [#uses=1]
%tmp6 = or <4 x i32> %tmp2, %tmp5 ; <<4 x i32>> [#uses=1]
ret <4 x i32> %tmp6
}
define i32 @selb_i32(i32 %arg1, i32 %arg2, i32 %arg3) {
%tmp1not = xor i32 %arg3, -1 ; <i32> [#uses=1]
%tmp3 = and i32 %tmp1not, %arg1 ; <i32> [#uses=1]
%tmp6 = and i32 %arg3, %arg2 ; <i32> [#uses=1]
%tmp7 = or i32 %tmp3, %tmp6 ; <i32> [#uses=1]
ret i32 %tmp7
}
define i16 @selb_i16(i16 signext %arg1, i16 signext %arg2, i16 signext %arg3) signext {
%tmp3 = and i16 %arg3, %arg1 ; <i16> [#uses=1]
%tmp4not = xor i16 %arg3, -1 ; <i16> [#uses=1]
%tmp6 = and i16 %tmp4not, %arg2 ; <i16> [#uses=1]
%retval1011 = or i16 %tmp3, %tmp6 ; <i16> [#uses=1]
ret i16 %retval1011
}
define i16 @selb_i16u(i16 zeroext %arg1, i16 zeroext %arg2, i16 zeroext %arg3) zeroext {
%tmp3 = and i16 %arg3, %arg1 ; <i16> [#uses=1]
%tmp4not = xor i16 %arg3, -1 ; <i16> [#uses=1]
%tmp6 = and i16 %tmp4not, %arg2 ; <i16> [#uses=1]
%retval1011 = or i16 %tmp3, %tmp6 ; <i16> [#uses=1]
ret i16 %retval1011
}
define i8 @selb_i8u(i8 zeroext %arg1, i8 zeroext %arg2, i8 zeroext %arg3) zeroext {
%tmp3 = and i8 %arg3, %arg1 ; <i8> [#uses=1]
%tmp4not = xor i8 %arg3, -1 ; <i8> [#uses=1]
%tmp6 = and i8 %tmp4not, %arg2 ; <i8> [#uses=1]
%retval1011 = or i8 %tmp3, %tmp6 ; <i8> [#uses=1]
ret i8 %retval1011
}
define i8 @selb_i8(i8 signext %arg1, i8 signext %arg2, i8 signext %arg3) signext {
%tmp3 = and i8 %arg3, %arg1 ; <i8> [#uses=1]
%tmp4not = xor i8 %arg3, -1 ; <i8> [#uses=1]
%tmp6 = and i8 %tmp4not, %arg2 ; <i8> [#uses=1]
%retval1011 = or i8 %tmp3, %tmp6 ; <i8> [#uses=1]
ret i8 %retval1011
}

View File

@ -0,0 +1,210 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep shlh %t1.s | count 84
; RUN: grep shlhi %t1.s | count 51
; RUN: grep shl %t1.s | count 168
; RUN: grep shli %t1.s | count 51
; RUN: grep xshw %t1.s | count 5
; RUN: grep and %t1.s | count 5
; Vector shifts are not currently supported in gcc or llvm assembly. These are
; not tested.
; Shift left i16 via register, note that the second operand to shl is promoted
; to a 32-bit type:
define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) {
%A = shl i16 %arg1, %arg2
ret i16 %A
}
define i16 @shlh_i16_2(i16 %arg1, i16 %arg2) {
%A = shl i16 %arg2, %arg1
ret i16 %A
}
define i16 @shlh_i16_3(i16 signext %arg1, i16 signext %arg2) signext {
%A = shl i16 %arg1, %arg2
ret i16 %A
}
define i16 @shlh_i16_4(i16 signext %arg1, i16 signext %arg2) signext {
%A = shl i16 %arg2, %arg1
ret i16 %A
}
define i16 @shlh_i16_5(i16 zeroext %arg1, i16 zeroext %arg2) zeroext {
%A = shl i16 %arg1, %arg2
ret i16 %A
}
define i16 @shlh_i16_6(i16 zeroext %arg1, i16 zeroext %arg2) zeroext {
%A = shl i16 %arg2, %arg1
ret i16 %A
}
; Shift left i16 with immediate:
define i16 @shlhi_i16_1(i16 %arg1) {
%A = shl i16 %arg1, 12
ret i16 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i16 @shlhi_i16_2(i16 %arg1) {
%A = shl i16 %arg1, 0
ret i16 %A
}
define i16 @shlhi_i16_3(i16 %arg1) {
%A = shl i16 16383, %arg1
ret i16 %A
}
; Should generate 0, 0 << arg1 = 0
define i16 @shlhi_i16_4(i16 %arg1) {
%A = shl i16 0, %arg1
ret i16 %A
}
define i16 @shlhi_i16_5(i16 signext %arg1) signext {
%A = shl i16 %arg1, 12
ret i16 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i16 @shlhi_i16_6(i16 signext %arg1) signext {
%A = shl i16 %arg1, 0
ret i16 %A
}
define i16 @shlhi_i16_7(i16 signext %arg1) signext {
%A = shl i16 16383, %arg1
ret i16 %A
}
; Should generate 0, 0 << arg1 = 0
define i16 @shlhi_i16_8(i16 signext %arg1) signext {
%A = shl i16 0, %arg1
ret i16 %A
}
define i16 @shlhi_i16_9(i16 zeroext %arg1) zeroext {
%A = shl i16 %arg1, 12
ret i16 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i16 @shlhi_i16_10(i16 zeroext %arg1) zeroext {
%A = shl i16 %arg1, 0
ret i16 %A
}
define i16 @shlhi_i16_11(i16 zeroext %arg1) zeroext {
%A = shl i16 16383, %arg1
ret i16 %A
}
; Should generate 0, 0 << arg1 = 0
define i16 @shlhi_i16_12(i16 zeroext %arg1) zeroext {
%A = shl i16 0, %arg1
ret i16 %A
}
; Shift left i32 via register, note that the second operand to shl is promoted
; to a 32-bit type:
define i32 @shl_i32_1(i32 %arg1, i32 %arg2) {
%A = shl i32 %arg1, %arg2
ret i32 %A
}
define i32 @shl_i32_2(i32 %arg1, i32 %arg2) {
%A = shl i32 %arg2, %arg1
ret i32 %A
}
define i32 @shl_i32_3(i32 signext %arg1, i32 signext %arg2) signext {
%A = shl i32 %arg1, %arg2
ret i32 %A
}
define i32 @shl_i32_4(i32 signext %arg1, i32 signext %arg2) signext {
%A = shl i32 %arg2, %arg1
ret i32 %A
}
define i32 @shl_i32_5(i32 zeroext %arg1, i32 zeroext %arg2) zeroext {
%A = shl i32 %arg1, %arg2
ret i32 %A
}
define i32 @shl_i32_6(i32 zeroext %arg1, i32 zeroext %arg2) zeroext {
%A = shl i32 %arg2, %arg1
ret i32 %A
}
; Shift left i32 with immediate:
define i32 @shli_i32_1(i32 %arg1) {
%A = shl i32 %arg1, 12
ret i32 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i32 @shli_i32_2(i32 %arg1) {
%A = shl i32 %arg1, 0
ret i32 %A
}
define i32 @shli_i32_3(i32 %arg1) {
%A = shl i32 16383, %arg1
ret i32 %A
}
; Should generate 0, 0 << arg1 = 0
define i32 @shli_i32_4(i32 %arg1) {
%A = shl i32 0, %arg1
ret i32 %A
}
define i32 @shli_i32_5(i32 signext %arg1) signext {
%A = shl i32 %arg1, 12
ret i32 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i32 @shli_i32_6(i32 signext %arg1) signext {
%A = shl i32 %arg1, 0
ret i32 %A
}
define i32 @shli_i32_7(i32 signext %arg1) signext {
%A = shl i32 16383, %arg1
ret i32 %A
}
; Should generate 0, 0 << arg1 = 0
define i32 @shli_i32_8(i32 signext %arg1) signext {
%A = shl i32 0, %arg1
ret i32 %A
}
define i32 @shli_i32_9(i32 zeroext %arg1) zeroext {
%A = shl i32 %arg1, 12
ret i32 %A
}
; Should not generate anything other than the return, arg1 << 0 = arg1
define i32 @shli_i32_10(i32 zeroext %arg1) zeroext {
%A = shl i32 %arg1, 0
ret i32 %A
}
define i32 @shli_i32_11(i32 zeroext %arg1) zeroext {
%A = shl i32 16383, %arg1
ret i32 %A
}
; Should generate 0, 0 << arg1 = 0
define i32 @shli_i32_12(i32 zeroext %arg1) zeroext {
%A = shl i32 0, %arg1
ret i32 %A
}

View File

@ -0,0 +1,88 @@
; RUN: llvm-as -o - %s | llc -march=cellspu > %t1.s
; RUN: grep fa %t1.s | count 2 &&
; RUN: grep fs %t1.s | count 2 &&
; RUN: grep fm %t1.s | count 6 &&
; RUN: grep fma %t1.s | count 2 &&
; RUN: grep fms %t1.s | count 2 &&
; RUN: grep fnms %t1.s | count 3
;
; This file includes standard floating point arithmetic instructions
; NOTE fdiv is tested separately since it is a compound operation
define float @fp_add(float %arg1, float %arg2) {
%A = add float %arg1, %arg2 ; <float> [#uses=1]
ret float %A
}
define <4 x float> @fp_add_vec(<4 x float> %arg1, <4 x float> %arg2) {
%A = add <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
ret <4 x float> %A
}
define float @fp_sub(float %arg1, float %arg2) {
%A = sub float %arg1, %arg2 ; <float> [#uses=1]
ret float %A
}
define <4 x float> @fp_sub_vec(<4 x float> %arg1, <4 x float> %arg2) {
%A = sub <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
ret <4 x float> %A
}
define float @fp_mul(float %arg1, float %arg2) {
%A = mul float %arg1, %arg2 ; <float> [#uses=1]
ret float %A
}
define <4 x float> @fp_mul_vec(<4 x float> %arg1, <4 x float> %arg2) {
%A = mul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
ret <4 x float> %A
}
define float @fp_mul_add(float %arg1, float %arg2, float %arg3) {
%A = mul float %arg1, %arg2 ; <float> [#uses=1]
%B = add float %A, %arg3 ; <float> [#uses=1]
ret float %B
}
define <4 x float> @fp_mul_add_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) {
%A = mul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
%B = add <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1]
ret <4 x float> %B
}
define float @fp_mul_sub(float %arg1, float %arg2, float %arg3) {
%A = mul float %arg1, %arg2 ; <float> [#uses=1]
%B = sub float %A, %arg3 ; <float> [#uses=1]
ret float %B
}
define <4 x float> @fp_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) {
%A = mul <4 x float> %arg1, %arg2 ; <<4 x float>> [#uses=1]
%B = sub <4 x float> %A, %arg3 ; <<4 x float>> [#uses=1]
ret <4 x float> %B
}
; Test the straightforward way of getting fnms
; c - a * b
define float @fp_neg_mul_sub_1(float %arg1, float %arg2, float %arg3) {
%A = mul float %arg1, %arg2
%B = sub float %arg3, %A
ret float %B
}
; Test another way of getting fnms
; - ( a *b -c ) = c - a * b
define float @fp_neg_mul_sub_2(float %arg1, float %arg2, float %arg3) {
%A = mul float %arg1, %arg2
%B = sub float %A, %arg3
%C = sub float -0.0, %B
ret float %C
}
define <4 x float> @fp_neg_mul_sub_vec(<4 x float> %arg1, <4 x float> %arg2, <4 x float> %arg3) {
%A = mul <4 x float> %arg1, %arg2
%B = sub <4 x float> %A, %arg3
%D = sub <4 x float> < float -0.0, float -0.0, float -0.0, float -0.0 >, %B
ret <4 x float> %D
}