Now that instcombine does this xform, remove it from the -raise pass

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@24082 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2005-10-29 04:40:23 +00:00
parent cfd65100c4
commit 1462aa78c7

View File

@ -16,7 +16,6 @@
#include "TransformInternals.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Analysis/Expressions.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
@ -29,115 +28,6 @@ static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
static void ConvertOperandToType(User *U, Value *OldVal, Value *NewVal,
ValueMapCache &VMC, const TargetData &TD);
// Peephole Malloc instructions: we take a look at the use chain of the
// malloc instruction, and try to find out if the following conditions hold:
// 1. The malloc is of the form: 'malloc [sbyte], uint <constant>'
// 2. The only users of the malloc are cast & add instructions
// 3. Of the cast instructions, there is only one destination pointer type
// [RTy] where the size of the pointed to object is equal to the number
// of bytes allocated.
//
// If these conditions hold, we convert the malloc to allocate an [RTy]
// element. TODO: This comment is out of date WRT arrays
//
static bool MallocConvertibleToType(MallocInst *MI, const Type *Ty,
ValueTypeCache &CTMap,
const TargetData &TD) {
if (!isa<PointerType>(Ty)) return false; // Malloc always returns pointers
// Deal with the type to allocate, not the pointer type...
Ty = cast<PointerType>(Ty)->getElementType();
if (!Ty->isSized() || !MI->getType()->getElementType()->isSized())
return false; // Can only alloc something with a size
// Analyze the number of bytes allocated...
ExprType Expr = ClassifyExpr(MI->getArraySize());
// Get information about the base datatype being allocated, before & after
uint64_t ReqTypeSize = TD.getTypeSize(Ty);
if (ReqTypeSize == 0) return false;
uint64_t OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());
// Must have a scale or offset to analyze it...
if (!Expr.Offset && !Expr.Scale && OldTypeSize == 1) return false;
// Get the offset and scale of the allocation...
int64_t OffsetVal = Expr.Offset ? getConstantValue(Expr.Offset) : 0;
int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) :(Expr.Var != 0);
// The old type might not be of unit size, take old size into consideration
// here...
uint64_t Offset = OffsetVal * OldTypeSize;
uint64_t Scale = ScaleVal * OldTypeSize;
// In order to be successful, both the scale and the offset must be a multiple
// of the requested data type's size.
//
if (Offset/ReqTypeSize*ReqTypeSize != Offset ||
Scale/ReqTypeSize*ReqTypeSize != Scale)
return false; // Nope.
return true;
}
static Instruction *ConvertMallocToType(MallocInst *MI, const Type *Ty,
const std::string &Name,
ValueMapCache &VMC,
const TargetData &TD){
BasicBlock *BB = MI->getParent();
BasicBlock::iterator It = BB->end();
// Analyze the number of bytes allocated...
ExprType Expr = ClassifyExpr(MI->getArraySize());
const PointerType *AllocTy = cast<PointerType>(Ty);
const Type *ElType = AllocTy->getElementType();
uint64_t DataSize = TD.getTypeSize(ElType);
uint64_t OldTypeSize = TD.getTypeSize(MI->getType()->getElementType());
// Get the offset and scale coefficients that we are allocating...
int64_t OffsetVal = (Expr.Offset ? getConstantValue(Expr.Offset) : 0);
int64_t ScaleVal = Expr.Scale ? getConstantValue(Expr.Scale) : (Expr.Var !=0);
// The old type might not be of unit size, take old size into consideration
// here...
unsigned Offset = OffsetVal * OldTypeSize / DataSize;
unsigned Scale = ScaleVal * OldTypeSize / DataSize;
// Locate the malloc instruction, because we may be inserting instructions
It = MI;
// If we have a scale, apply it first...
if (Expr.Var) {
// Expr.Var is not necessarily unsigned right now, insert a cast now.
if (Expr.Var->getType() != Type::UIntTy)
Expr.Var = new CastInst(Expr.Var, Type::UIntTy,
Expr.Var->getName()+"-uint", It);
if (Scale != 1)
Expr.Var = BinaryOperator::create(Instruction::Mul, Expr.Var,
ConstantUInt::get(Type::UIntTy, Scale),
Expr.Var->getName()+"-scl", It);
} else {
// If we are not scaling anything, just make the offset be the "var"...
Expr.Var = ConstantUInt::get(Type::UIntTy, Offset);
Offset = 0; Scale = 1;
}
// If we have an offset now, add it in...
if (Offset != 0) {
assert(Expr.Var && "Var must be nonnull by now!");
Expr.Var = BinaryOperator::create(Instruction::Add, Expr.Var,
ConstantUInt::get(Type::UIntTy, Offset),
Expr.Var->getName()+"-off", It);
}
assert(AllocTy == Ty);
return new MallocInst(AllocTy->getElementType(), Expr.Var, Name);
}
// ExpressionConvertibleToType - Return true if it is possible
bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty,
@ -213,11 +103,6 @@ bool llvm::ExpressionConvertibleToType(Value *V, const Type *Ty,
break;
}
case Instruction::Malloc:
if (!MallocConvertibleToType(cast<MallocInst>(I), Ty, CTMap, TD))
return false;
break;
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertible to a pointer type if they have
// a number of zeros at the end. Because removing these values does not
@ -396,11 +281,6 @@ Value *llvm::ConvertExpressionToType(Value *V, const Type *Ty,
break;
}
case Instruction::Malloc: {
Res = ConvertMallocToType(cast<MallocInst>(I), Ty, Name, VMC, TD);
break;
}
case Instruction::GetElementPtr: {
// GetElementPtr's are directly convertible to a pointer type if they have
// a number of zeros at the end. Because removing these values does not