Re-enabling MCJIT object caching with memory leak fixed

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180575 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Kaylor 2013-04-25 21:02:36 +00:00
parent 29fce9ad39
commit 1c489455ea
6 changed files with 370 additions and 18 deletions

View File

@ -44,6 +44,7 @@ class JITMemoryManager;
class MachineCodeInfo;
class Module;
class MutexGuard;
class ObjectCache;
class DataLayout;
class Triple;
class Type;
@ -373,6 +374,12 @@ public:
virtual void RegisterJITEventListener(JITEventListener *) {}
virtual void UnregisterJITEventListener(JITEventListener *) {}
/// Sets the pre-compiled object cache. The ownership of the ObjectCache is
/// not changed. Supported by MCJIT but not JIT.
virtual void setObjectCache(ObjectCache *) {
llvm_unreachable("No support for an object cache");
}
/// DisableLazyCompilation - When lazy compilation is off (the default), the
/// JIT will eagerly compile every function reachable from the argument to
/// getPointerToFunction. If lazy compilation is turned on, the JIT will only

View File

@ -0,0 +1,54 @@
//===-- ObjectCache.h - Class definition for the ObjectCache -----C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_OBJECTCACHE_H
#define LLVM_LIB_EXECUTIONENGINE_OBJECTCACHE_H
#include "llvm/Support/MemoryBuffer.h"
namespace llvm {
class Module;
/// This is the base ObjectCache type which can be provided to an
/// ExecutionEngine for the purpose of avoiding compilation for Modules that
/// have already been compiled and an object file is available.
class ObjectCache {
public:
ObjectCache() { }
virtual ~ObjectCache() { }
/// notifyObjectCompiled - Provides a pointer to compiled code for Module M.
virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) = 0;
/// getObjectCopy - Returns a pointer to a newly allocated MemoryBuffer that
/// contains the object which corresponds with Module M, or 0 if an object is
/// not available. The caller owns the MemoryBuffer returned by this function.
MemoryBuffer* getObjectCopy(const Module* M) {
const MemoryBuffer* Obj = getObject(M);
if (Obj)
return MemoryBuffer::getMemBufferCopy(Obj->getBuffer());
else
return 0;
}
protected:
/// getObject - Returns a pointer to a MemoryBuffer that contains an object
/// that corresponds with Module M, or 0 if an object is not available.
/// The pointer returned by this function is not suitable for loading because
/// the memory is read-only and owned by the ObjectCache. To retrieve an
/// owning pointer to a MemoryBuffer (which is suitable for calling
/// RuntimeDyld::loadObject() with) use getObjectCopy() instead.
virtual const MemoryBuffer* getObject(const Module* M) = 0;
};
}
#endif

View File

@ -52,7 +52,7 @@ ExecutionEngine *MCJIT::createJIT(Module *M,
MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
bool AllocateGVsWithCode)
: ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(MM), Dyld(MM),
isCompiled(false), M(m) {
IsLoaded(false), M(m), ObjCache(0) {
setDataLayout(TM->getDataLayout());
}
@ -64,7 +64,11 @@ MCJIT::~MCJIT() {
delete TM;
}
void MCJIT::emitObject(Module *m) {
void MCJIT::setObjectCache(ObjectCache* NewCache) {
ObjCache = NewCache;
}
ObjectBufferStream* MCJIT::emitObject(Module *m) {
/// Currently, MCJIT only supports a single module and the module passed to
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
@ -77,30 +81,66 @@ void MCJIT::emitObject(Module *m) {
// FIXME: Track compilation state on a per-module basis when multiple modules
// are supported.
// Re-compilation is not supported
if (isCompiled)
return;
assert(!IsLoaded);
PassManager PM;
PM.add(new DataLayout(*TM->getDataLayout()));
// The RuntimeDyld will take ownership of this shortly
OwningPtr<ObjectBufferStream> Buffer(new ObjectBufferStream());
OwningPtr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, Buffer->getOStream(), false)) {
if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) {
report_fatal_error("Target does not support MC emission!");
}
// Initialize passes.
PM.run(*m);
// Flush the output buffer to get the generated code into memory
Buffer->flush();
CompiledObject->flush();
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
OwningPtr<MemoryBuffer> MB(CompiledObject->getMemBuffer());
ObjCache->notifyObjectCompiled(m, MB.get());
}
return CompiledObject.take();
}
void MCJIT::loadObject(Module *M) {
// Get a thread lock to make sure we aren't trying to load multiple times
MutexGuard locked(lock);
// FIXME: Track compilation state on a per-module basis when multiple modules
// are supported.
// Re-compilation is not supported
if (IsLoaded)
return;
OwningPtr<ObjectBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
if (0 != ObjCache) {
OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObjectCopy(M));
if (0 != PreCompiledObject.get())
ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take()));
}
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
ObjectToLoad.reset(emitObject(M));
assert(ObjectToLoad.get() && "Compilation did not produce an object.");
}
// Load the object into the dynamic linker.
// handing off ownership of the buffer
LoadedObject.reset(Dyld.loadObject(Buffer.take()));
LoadedObject.reset(Dyld.loadObject(ObjectToLoad.take()));
if (!LoadedObject)
report_fatal_error(Dyld.getErrorString());
@ -113,7 +153,7 @@ void MCJIT::emitObject(Module *m) {
NotifyObjectEmitted(*LoadedObject);
// FIXME: Add support for per-module compilation state
isCompiled = true;
IsLoaded = true;
}
// FIXME: Add a parameter to identify which object is being finalized when
@ -122,10 +162,10 @@ void MCJIT::emitObject(Module *m) {
// protection in the interface.
void MCJIT::finalizeObject() {
// If the module hasn't been compiled, just do that.
if (!isCompiled) {
// If the call to Dyld.resolveRelocations() is removed from emitObject()
if (!IsLoaded) {
// If the call to Dyld.resolveRelocations() is removed from loadObject()
// we'll need to do that here.
emitObject(M);
loadObject(M);
// Set page permissions.
MemMgr->applyPermissions();
@ -151,8 +191,8 @@ void *MCJIT::getPointerToFunction(Function *F) {
// dies.
// FIXME: Add support for per-module compilation state
if (!isCompiled)
emitObject(M);
if (!IsLoaded)
loadObject(M);
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
@ -284,8 +324,8 @@ GenericValue MCJIT::runFunction(Function *F,
void *MCJIT::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
// FIXME: Add support for per-module compilation state
if (!isCompiled)
emitObject(M);
if (!IsLoaded)
loadObject(M);
if (!isSymbolSearchingDisabled() && MemMgr) {
void *ptr = MemMgr->getPointerToNamedFunction(Name, false);

View File

@ -12,6 +12,7 @@
#include "llvm/ADT/SmallVector.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/PassManager.h"
@ -34,16 +35,23 @@ class MCJIT : public ExecutionEngine {
SmallVector<JITEventListener*, 2> EventListeners;
// FIXME: Add support for multiple modules
bool isCompiled;
bool IsLoaded;
Module *M;
OwningPtr<ObjectImage> LoadedObject;
// An optional ObjectCache to be notified of compiled objects and used to
// perform lookup of pre-compiled code to avoid re-compilation.
ObjectCache *ObjCache;
public:
~MCJIT();
/// @name ExecutionEngine interface implementation
/// @{
/// Sets the object manager that MCJIT should use to avoid compilation.
virtual void setObjectCache(ObjectCache *manager);
virtual void finalizeObject();
virtual void *getPointerToBasicBlock(BasicBlock *BB);
@ -102,7 +110,9 @@ protected:
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
/// the future.
void emitObject(Module *M);
ObjectBufferStream* emitObject(Module *M);
void loadObject(Module *M);
void NotifyObjectEmitted(const ObjectImage& Obj);
void NotifyFreeingObject(const ObjectImage& Obj);

View File

@ -10,6 +10,7 @@ set(LLVM_LINK_COMPONENTS
set(MCJITTestsSources
MCJITTest.cpp
MCJITMemoryManagerTest.cpp
MCJITObjectCacheTest.cpp
)
if(MSVC)

View File

@ -0,0 +1,240 @@
//===- MCJITObjectCacheTest.cpp - Unit tests for MCJIT object caching -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ExecutionEngine/JIT.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
#include "MCJITTestBase.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class TestObjectCache : public ObjectCache {
public:
TestObjectCache() : DuplicateInserted(false) { }
virtual ~TestObjectCache() {
// Free any buffers we've allocated.
SmallVector<MemoryBuffer *, 2>::iterator it, end;
end = AllocatedBuffers.end();
for (it = AllocatedBuffers.begin(); it != end; ++it) {
delete *it;
}
AllocatedBuffers.clear();
}
virtual void notifyObjectCompiled(const Module *M, const MemoryBuffer *Obj) {
// If we've seen this module before, note that.
const std::string ModuleID = M->getModuleIdentifier();
if (ObjMap.find(ModuleID) != ObjMap.end())
DuplicateInserted = true;
// Store a copy of the buffer in our map.
ObjMap[ModuleID] = copyBuffer(Obj);
}
// Test-harness-specific functions
bool wereDuplicatesInserted() { return DuplicateInserted; }
bool wasModuleLookedUp(const Module *M) {
return ModulesLookedUp.find(M->getModuleIdentifier())
!= ModulesLookedUp.end();
}
const MemoryBuffer* getObjectInternal(const Module* M) {
// Look for the module in our map.
const std::string ModuleID = M->getModuleIdentifier();
StringMap<const MemoryBuffer *>::iterator it = ObjMap.find(ModuleID);
if (it == ObjMap.end())
return 0;
return it->second;
}
protected:
virtual const MemoryBuffer* getObject(const Module* M) {
const MemoryBuffer* BufferFound = getObjectInternal(M);
ModulesLookedUp.insert(M->getModuleIdentifier());
return BufferFound;
}
private:
MemoryBuffer *copyBuffer(const MemoryBuffer *Buf) {
// Create a local copy of the buffer.
MemoryBuffer *NewBuffer = MemoryBuffer::getMemBufferCopy(Buf->getBuffer());
AllocatedBuffers.push_back(NewBuffer);
return NewBuffer;
}
StringMap<const MemoryBuffer *> ObjMap;
StringSet<> ModulesLookedUp;
SmallVector<MemoryBuffer *, 2> AllocatedBuffers;
bool DuplicateInserted;
};
class MCJITObjectCacheTest : public testing::Test, public MCJITTestBase {
protected:
enum {
OriginalRC = 6,
ReplacementRC = 7
};
virtual void SetUp() {
M.reset(createEmptyModule("<main>"));
Main = insertMainFunction(M.get(), OriginalRC);
}
void compileAndRun(int ExpectedRC = OriginalRC) {
// This function shouldn't be called until after SetUp.
ASSERT_TRUE(0 != TheJIT);
ASSERT_TRUE(0 != Main);
TheJIT->finalizeObject();
void *vPtr = TheJIT->getPointerToFunction(Main);
static_cast<SectionMemoryManager*>(MM)->invalidateInstructionCache();
EXPECT_TRUE(0 != vPtr)
<< "Unable to get pointer to main() from JIT";
int (*FuncPtr)(void) = (int(*)(void))(intptr_t)vPtr;
int returnCode = FuncPtr();
EXPECT_EQ(returnCode, ExpectedRC);
}
Function *Main;
};
TEST_F(MCJITObjectCacheTest, SetNullObjectCache) {
SKIP_UNSUPPORTED_PLATFORM;
createJIT(M.take());
TheJIT->setObjectCache(NULL);
compileAndRun();
}
TEST_F(MCJITObjectCacheTest, VerifyBasicObjectCaching) {
SKIP_UNSUPPORTED_PLATFORM;
OwningPtr<TestObjectCache> Cache(new TestObjectCache);
// Save a copy of the module pointer before handing it off to MCJIT.
const Module * SavedModulePointer = M.get();
createJIT(M.take());
TheJIT->setObjectCache(Cache.get());
// Verify that our object cache does not contain the module yet.
const MemoryBuffer *ObjBuffer = Cache->getObjectInternal(SavedModulePointer);
EXPECT_EQ(0, ObjBuffer);
compileAndRun();
// Verify that MCJIT tried to look-up this module in the cache.
EXPECT_TRUE(Cache->wasModuleLookedUp(SavedModulePointer));
// Verify that our object cache now contains the module.
ObjBuffer = Cache->getObjectInternal(SavedModulePointer);
EXPECT_TRUE(0 != ObjBuffer);
// Verify that the cache was only notified once.
EXPECT_FALSE(Cache->wereDuplicatesInserted());
}
TEST_F(MCJITObjectCacheTest, VerifyLoadFromCache) {
SKIP_UNSUPPORTED_PLATFORM;
OwningPtr<TestObjectCache> Cache(new TestObjectCache);
// Compile this module with an MCJIT engine
createJIT(M.take());
TheJIT->setObjectCache(Cache.get());
TheJIT->finalizeObject();
// Destroy the MCJIT engine we just used
TheJIT.reset();
// Create a new memory manager.
MM = new SectionMemoryManager;
// Create a new module and save it. Use a different return code so we can
// tell if MCJIT compiled this module or used the cache.
M.reset(createEmptyModule("<main>"));
Main = insertMainFunction(M.get(), ReplacementRC);
const Module * SecondModulePointer = M.get();
// Create a new MCJIT instance to load this module then execute it.
createJIT(M.take());
TheJIT->setObjectCache(Cache.get());
compileAndRun();
// Verify that MCJIT tried to look-up this module in the cache.
EXPECT_TRUE(Cache->wasModuleLookedUp(SecondModulePointer));
// Verify that MCJIT didn't try to cache this again.
EXPECT_FALSE(Cache->wereDuplicatesInserted());
}
TEST_F(MCJITObjectCacheTest, VerifyNonLoadFromCache) {
SKIP_UNSUPPORTED_PLATFORM;
OwningPtr<TestObjectCache> Cache(new TestObjectCache);
// Compile this module with an MCJIT engine
createJIT(M.take());
TheJIT->setObjectCache(Cache.get());
TheJIT->finalizeObject();
// Destroy the MCJIT engine we just used
TheJIT.reset();
// Create a new memory manager.
MM = new SectionMemoryManager;
// Create a new module and save it. Use a different return code so we can
// tell if MCJIT compiled this module or used the cache. Note that we use
// a new module name here so the module shouldn't be found in the cache.
M.reset(createEmptyModule("<not-main>"));
Main = insertMainFunction(M.get(), ReplacementRC);
const Module * SecondModulePointer = M.get();
// Create a new MCJIT instance to load this module then execute it.
createJIT(M.take());
TheJIT->setObjectCache(Cache.get());
// Verify that our object cache does not contain the module yet.
const MemoryBuffer *ObjBuffer = Cache->getObjectInternal(SecondModulePointer);
EXPECT_EQ(0, ObjBuffer);
// Run the function and look for the replacement return code.
compileAndRun(ReplacementRC);
// Verify that MCJIT tried to look-up this module in the cache.
EXPECT_TRUE(Cache->wasModuleLookedUp(SecondModulePointer));
// Verify that our object cache now contains the module.
ObjBuffer = Cache->getObjectInternal(SecondModulePointer);
EXPECT_TRUE(0 != ObjBuffer);
// Verify that MCJIT didn't try to cache this again.
EXPECT_FALSE(Cache->wereDuplicatesInserted());
}
} // Namespace