Added support for spilling

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@992 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Ruchira Sasanka 2001-10-28 18:15:12 +00:00
parent 78d63ee313
commit 20c82b12c9
9 changed files with 559 additions and 115 deletions

View File

@ -100,6 +100,9 @@ class RegClass
{ IG.mergeIGNodesOfLRs(LR1, LR2); }
inline bool * getIsColorUsedArr() { return IsColorUsedArr; }
inline void printIGNodeList() const {
cerr << "IG Nodes for Register Class " << RegClassID << ":" << endl;
IG.printIGNodeList();

View File

@ -55,6 +55,11 @@ class LiveRange : public ValueSet
bool CanUseSuggestedCol;
// if this LR is spilled, its stack offset from *FP*. The spilled offsets
// must always be relative to the FP.
int SpilledStackOffsetFromFP;
bool HasSpillOffset;
public:
@ -88,6 +93,33 @@ class LiveRange : public ValueSet
inline void markForSpill() { mustSpill = true; }
inline bool isMarkedForSpill() { return mustSpill; }
inline void setSpillOffFromFP(int StackOffset) {
assert( mustSpill && "This LR is not spilled");
SpilledStackOffsetFromFP = StackOffset;
HasSpillOffset = true;
}
inline void modifySpillOffFromFP(int StackOffset) {
assert( mustSpill && "This LR is not spilled");
SpilledStackOffsetFromFP = StackOffset;
HasSpillOffset = true;
}
inline bool hasSpillOffset() {
return HasSpillOffset;
}
inline int getSpillOffFromFP() const {
assert( HasSpillOffset && "This LR is not spilled");
return SpilledStackOffsetFromFP;
}
inline void markForSaveAcrossCalls() { mustSaveAcrossCalls = true; }
// inline void markForLoadFromStack() { mustLoadFromStack = true;
@ -135,6 +167,11 @@ class LiveRange : public ValueSet
}
inline LiveRange() : ValueSet() /* , CallInterferenceList() */
{
Color = SuggestedColor = -1; // not yet colored
@ -143,6 +180,7 @@ class LiveRange : public ValueSet
UserIGNode = NULL;
doesSpanAcrossCalls = false;
CanUseSuggestedCol = true;
HasSpillOffset = false;
}
};

View File

@ -29,8 +29,6 @@
*/
#ifndef PHY_REG_ALLOC_H
#define PHY_REG_ALLOC_H
@ -41,11 +39,21 @@
#include <deque>
//----------------------------------------------------------------------------
// Class AddedInstrns:
// When register allocator inserts new instructions in to the existing
// instruction stream, it does NOT directly modify the instruction stream.
// Rather, it creates an object of AddedInstrns and stick it in the
// AddedInstrMap for an existing instruction. This class contains two vectors
// to store such instructions added before and after an existing instruction.
//----------------------------------------------------------------------------
class AddedInstrns
{
public:
deque<MachineInstr *> InstrnsBefore;
deque<MachineInstr *> InstrnsAfter;
deque<MachineInstr *> InstrnsBefore; // Added insts BEFORE an existing inst
deque<MachineInstr *> InstrnsAfter; // Added insts AFTER an existing inst
AddedInstrns() : InstrnsBefore(), InstrnsAfter() { }
};
@ -54,6 +62,80 @@ typedef hash_map<const MachineInstr *, AddedInstrns *> AddedInstrMapType;
//----------------------------------------------------------------------------
// Class RegStackOffsets:
// This class is responsible for managing stack frame of the method for
// register allocation.
//
//----------------------------------------------------------------------------
class RegStackOffsets {
private:
int curSpilledVarOff; // cur pos of spilled LRs
int curNewTmpPosOffset; // cur pos of tmp values on stack
bool isTmpRegionUsable; // can we call getNewTmpPosOffFromFP
const int SizeOfStackItem; // size of an item on stack
const int StackSpillStartFromFP; // start position of spill region
int StartOfTmpRegion; // start of the tmp var region
public:
// constructor
RegStackOffsets(int SEnSize=8, int StartSpill=176 ) :
SizeOfStackItem(SEnSize), StackSpillStartFromFP(StartSpill) {
curSpilledVarOff = StartSpill;
isTmpRegionUsable = false;
};
int getNewSpillOffFromFP() {
int tmp = curSpilledVarOff;
curSpilledVarOff += SizeOfStackItem;
return tmp; // **TODO: Is sending un-incremented value correct?
};
// The following method must be called only after allocating space
// for spilled LRs and calling setEndOfSpillRegion()
int getNewTmpPosOffFromFP() {
assert( isTmpRegionUsable && "Spill region still open");
int tmp = curNewTmpPosOffset;
curNewTmpPosOffset += SizeOfStackItem;
return tmp; //**TODO: Is sending un-incremented val correct?
};
// This method is called when we have allocated space for all spilled
// LRs. The tmp region can be used only after a call to this method.
void setEndOfSpillRegion() {
assert(( ! isTmpRegionUsable) && "setEndOfSpillRegion called again");
isTmpRegionUsable = true;
StartOfTmpRegion = curSpilledVarOff;
}
// called when temporary values allocated on stack are no longer needed
void resetTmpPos() {
curNewTmpPosOffset = StartOfTmpRegion;
}
};
//----------------------------------------------------------------------------
// class PhyRegAlloc:
// Main class the register allocator. Call allocateRegisters() to allocate
// registers for a Method.
//----------------------------------------------------------------------------
class PhyRegAlloc
{
@ -71,7 +153,7 @@ class PhyRegAlloc
AddedInstrMapType AddedInstrMap; // to store instrns added in this phase
RegStackOffsets StackOffsets;
//------- private methods ---------------------------------------------------
@ -81,8 +163,8 @@ class PhyRegAlloc
void addInterferencesForArgs();
void createIGNodeListsAndIGs();
void buildInterferenceGraphs();
void insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB );
//void insertCallerSavingCode(const MachineInstr *MInst,
// const BasicBlock *BB );
void setCallInterferences(const MachineInstr *MInst,
const LiveVarSet *const LVSetAft );
@ -91,6 +173,12 @@ class PhyRegAlloc
const MachineInstr *DelayedMI );
void markUnusableSugColors();
void allocateStackSpace4SpilledLRs();
RegStackOffsets & getStackOffsets() {
return StackOffsets;
}
inline void constructLiveRanges()
{ LRI.constructLiveRanges(); }
@ -101,8 +189,14 @@ class PhyRegAlloc
void printLabel(const Value *const Val);
void printMachineCode();
friend class UltraSparcRegInfo;
void setRegsUsedByThisInst(RegClass *RC, const MachineInstr *MInst );
int getRegNotUsedByThisInst(RegClass *RC, const MachineInstr *MInst);
public:
PhyRegAlloc(const Method *const M, const TargetMachine& TM,
MethodLiveVarInfo *const Lvi);
@ -117,5 +211,8 @@ class PhyRegAlloc
#endif

View File

@ -100,6 +100,9 @@ class RegClass
{ IG.mergeIGNodesOfLRs(LR1, LR2); }
inline bool * getIsColorUsedArr() { return IsColorUsedArr; }
inline void printIGNodeList() const {
cerr << "IG Nodes for Register Class " << RegClassID << ":" << endl;
IG.printIGNodeList();

View File

@ -55,6 +55,11 @@ class LiveRange : public ValueSet
bool CanUseSuggestedCol;
// if this LR is spilled, its stack offset from *FP*. The spilled offsets
// must always be relative to the FP.
int SpilledStackOffsetFromFP;
bool HasSpillOffset;
public:
@ -88,6 +93,33 @@ class LiveRange : public ValueSet
inline void markForSpill() { mustSpill = true; }
inline bool isMarkedForSpill() { return mustSpill; }
inline void setSpillOffFromFP(int StackOffset) {
assert( mustSpill && "This LR is not spilled");
SpilledStackOffsetFromFP = StackOffset;
HasSpillOffset = true;
}
inline void modifySpillOffFromFP(int StackOffset) {
assert( mustSpill && "This LR is not spilled");
SpilledStackOffsetFromFP = StackOffset;
HasSpillOffset = true;
}
inline bool hasSpillOffset() {
return HasSpillOffset;
}
inline int getSpillOffFromFP() const {
assert( HasSpillOffset && "This LR is not spilled");
return SpilledStackOffsetFromFP;
}
inline void markForSaveAcrossCalls() { mustSaveAcrossCalls = true; }
// inline void markForLoadFromStack() { mustLoadFromStack = true;
@ -135,6 +167,11 @@ class LiveRange : public ValueSet
}
inline LiveRange() : ValueSet() /* , CallInterferenceList() */
{
Color = SuggestedColor = -1; // not yet colored
@ -143,6 +180,7 @@ class LiveRange : public ValueSet
UserIGNode = NULL;
doesSpanAcrossCalls = false;
CanUseSuggestedCol = true;
HasSpillOffset = false;
}
};

View File

@ -29,8 +29,6 @@
*/
#ifndef PHY_REG_ALLOC_H
#define PHY_REG_ALLOC_H
@ -41,11 +39,21 @@
#include <deque>
//----------------------------------------------------------------------------
// Class AddedInstrns:
// When register allocator inserts new instructions in to the existing
// instruction stream, it does NOT directly modify the instruction stream.
// Rather, it creates an object of AddedInstrns and stick it in the
// AddedInstrMap for an existing instruction. This class contains two vectors
// to store such instructions added before and after an existing instruction.
//----------------------------------------------------------------------------
class AddedInstrns
{
public:
deque<MachineInstr *> InstrnsBefore;
deque<MachineInstr *> InstrnsAfter;
deque<MachineInstr *> InstrnsBefore; // Added insts BEFORE an existing inst
deque<MachineInstr *> InstrnsAfter; // Added insts AFTER an existing inst
AddedInstrns() : InstrnsBefore(), InstrnsAfter() { }
};
@ -54,6 +62,80 @@ typedef hash_map<const MachineInstr *, AddedInstrns *> AddedInstrMapType;
//----------------------------------------------------------------------------
// Class RegStackOffsets:
// This class is responsible for managing stack frame of the method for
// register allocation.
//
//----------------------------------------------------------------------------
class RegStackOffsets {
private:
int curSpilledVarOff; // cur pos of spilled LRs
int curNewTmpPosOffset; // cur pos of tmp values on stack
bool isTmpRegionUsable; // can we call getNewTmpPosOffFromFP
const int SizeOfStackItem; // size of an item on stack
const int StackSpillStartFromFP; // start position of spill region
int StartOfTmpRegion; // start of the tmp var region
public:
// constructor
RegStackOffsets(int SEnSize=8, int StartSpill=176 ) :
SizeOfStackItem(SEnSize), StackSpillStartFromFP(StartSpill) {
curSpilledVarOff = StartSpill;
isTmpRegionUsable = false;
};
int getNewSpillOffFromFP() {
int tmp = curSpilledVarOff;
curSpilledVarOff += SizeOfStackItem;
return tmp; // **TODO: Is sending un-incremented value correct?
};
// The following method must be called only after allocating space
// for spilled LRs and calling setEndOfSpillRegion()
int getNewTmpPosOffFromFP() {
assert( isTmpRegionUsable && "Spill region still open");
int tmp = curNewTmpPosOffset;
curNewTmpPosOffset += SizeOfStackItem;
return tmp; //**TODO: Is sending un-incremented val correct?
};
// This method is called when we have allocated space for all spilled
// LRs. The tmp region can be used only after a call to this method.
void setEndOfSpillRegion() {
assert(( ! isTmpRegionUsable) && "setEndOfSpillRegion called again");
isTmpRegionUsable = true;
StartOfTmpRegion = curSpilledVarOff;
}
// called when temporary values allocated on stack are no longer needed
void resetTmpPos() {
curNewTmpPosOffset = StartOfTmpRegion;
}
};
//----------------------------------------------------------------------------
// class PhyRegAlloc:
// Main class the register allocator. Call allocateRegisters() to allocate
// registers for a Method.
//----------------------------------------------------------------------------
class PhyRegAlloc
{
@ -71,7 +153,7 @@ class PhyRegAlloc
AddedInstrMapType AddedInstrMap; // to store instrns added in this phase
RegStackOffsets StackOffsets;
//------- private methods ---------------------------------------------------
@ -81,8 +163,8 @@ class PhyRegAlloc
void addInterferencesForArgs();
void createIGNodeListsAndIGs();
void buildInterferenceGraphs();
void insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB );
//void insertCallerSavingCode(const MachineInstr *MInst,
// const BasicBlock *BB );
void setCallInterferences(const MachineInstr *MInst,
const LiveVarSet *const LVSetAft );
@ -91,6 +173,12 @@ class PhyRegAlloc
const MachineInstr *DelayedMI );
void markUnusableSugColors();
void allocateStackSpace4SpilledLRs();
RegStackOffsets & getStackOffsets() {
return StackOffsets;
}
inline void constructLiveRanges()
{ LRI.constructLiveRanges(); }
@ -101,8 +189,14 @@ class PhyRegAlloc
void printLabel(const Value *const Val);
void printMachineCode();
friend class UltraSparcRegInfo;
void setRegsUsedByThisInst(RegClass *RC, const MachineInstr *MInst );
int getRegNotUsedByThisInst(RegClass *RC, const MachineInstr *MInst);
public:
PhyRegAlloc(const Method *const M, const TargetMachine& TM,
MethodLiveVarInfo *const Lvi);
@ -117,5 +211,8 @@ class PhyRegAlloc
#endif

View File

@ -100,6 +100,9 @@ class RegClass
{ IG.mergeIGNodesOfLRs(LR1, LR2); }
inline bool * getIsColorUsedArr() { return IsColorUsedArr; }
inline void printIGNodeList() const {
cerr << "IG Nodes for Register Class " << RegClassID << ":" << endl;
IG.printIGNodeList();

View File

@ -113,9 +113,17 @@ public:
//----------------------------------------------------------------------------
// class UltraSparcRegInfo
//
//----------------------------------------------------------------------------
class LiveRange;
class UltraSparc;
class PhyRegAlloc;
class UltraSparcRegInfo : public MachineRegInfo
@ -144,6 +152,9 @@ class UltraSparcRegInfo : public MachineRegInfo
FloatCCRegType
};
// the size of a value (int, float, etc..) stored in the stack frame
// WARNING: If the above enum order must be changed, also modify
// getRegisterClassOfValue method below since it assumes this particular
@ -158,6 +169,9 @@ class UltraSparcRegInfo : public MachineRegInfo
unsigned const NumOfIntArgRegs;
unsigned const NumOfFloatArgRegs;
int const InvalidRegNum;
int SizeOfOperandOnStack;
//void setCallArgColor(LiveRange *const LR, const unsigned RegNo) const;
@ -246,7 +260,8 @@ class UltraSparcRegInfo : public MachineRegInfo
UltraSparcRegInfo(const UltraSparc *const USI ) : UltraSparcInfo(USI),
NumOfIntArgRegs(6),
NumOfFloatArgRegs(32),
InvalidRegNum(1000)
InvalidRegNum(1000),
SizeOfOperandOnStack(8)
{
MachineRegClassArr.push_back( new SparcIntRegClass(IntRegClassID) );
MachineRegClassArr.push_back( new SparcFloatRegClass(FloatRegClassID) );
@ -255,6 +270,7 @@ class UltraSparcRegInfo : public MachineRegInfo
assert( SparcFloatRegOrder::StartOfNonVolatileRegs == 32 &&
"32 Float regs are used for float arg passing");
}
// ***** TODO Delete
@ -317,7 +333,7 @@ class UltraSparcRegInfo : public MachineRegInfo
AddedInstrns *const FirstAI) const;
void colorCallArgs(const MachineInstr *const CallMI, LiveRangeInfo& LRI,
AddedInstrns *const CallAI) const;
AddedInstrns *const CallAI, PhyRegAlloc &PRA) const;
void colorRetValue(const MachineInstr *const RetI, LiveRangeInfo& LRI,
AddedInstrns *const RetAI) const;
@ -402,6 +418,11 @@ class UltraSparcRegInfo : public MachineRegInfo
return InvalidRegNum;
}
void insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB, PhyRegAlloc &PRA ) const;
};
@ -1115,7 +1136,9 @@ public:
static const int FirstOutgoingArgOffsetFromSP = 128;
static const int FirstOptionalOutgoingArgOffsetFromSP = 176;
static const int StaticStackAreaOffsetFromFP = -1;
static const int FirstIncomingArgOffsetFromFP = 126;
static int getFirstAutomaticVarOffsetFromFP (const Method* method);
static int getRegSpillAreaOffsetFromFP (const Method* method);
static int getFrameSizeBelowDynamicArea (const Method* method);

View File

@ -129,7 +129,7 @@ UltraSparcRegInfo::getCallInstNumArgs(const MachineInstr *CallMI) const {
assert( (NumArgs != -1) && "Internal error in getCallInstNumArgs" );
return (unsigned) NumArgs;
}
@ -321,21 +321,57 @@ void UltraSparcRegInfo::colorMethodArgs(const Method *const Meth,
if( isArgInReg )
AdMI = cpReg2RegMI( UniArgReg, UniLRReg, RegType );
else
assert(0 && "TODO: Color an Incoming arg on stack");
else {
// Now add the instruction
FirstAI->InstrnsBefore.push_back( AdMI );
// Now the arg is coming on stack. Since the LR recieved a register,
// we just have to load the arg on stack into that register
int ArgStakOffFromFP =
UltraSparcFrameInfo::FirstIncomingArgOffsetFromFP +
argNo * SizeOfOperandOnStack;
AdMI = cpMem2RegMI(getFramePointer(), ArgStakOffFromFP,
UniLRReg, RegType );
}
FirstAI->InstrnsBefore.push_back( AdMI );
} // if LR received a color
else {
// Now, the LR did not receive a color. But it has a stack offset for
// spilling.
// So, if the arg is coming in UniArgReg register, we can just move
// that on to the stack pos of LR
if( isArgInReg ) {
MachineInstr *AdIBef =
cpReg2MemMI(UniArgReg, getFramePointer(),
LR->getSpillOffFromFP(), RegType );
FirstAI->InstrnsBefore.push_back( AdMI );
}
else {
// Now the arg is coming on stack. Since the LR did NOT
// recieved a register as well, it is allocated a stack position. We
// can simply change the stack poistion of the LR. We can do this,
// since this method is called before any other method that makes
// uses of the stack pos of the LR (e.g., updateMachineInstr)
int ArgStakOffFromFP =
UltraSparcFrameInfo::FirstIncomingArgOffsetFromFP +
argNo * SizeOfOperandOnStack;
LR->modifySpillOffFromFP( ArgStakOffFromFP );
}
}
else { // LR is not colored (i.e., spilled)
assert(0 && "TODO: Color a spilled arg ");
}
} // for each incoming argument
}
@ -452,10 +488,10 @@ void UltraSparcRegInfo::suggestRegs4CallArgs(const MachineInstr *const CallMI,
// to instert copy instructions.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::colorCallArgs(const MachineInstr *const CallMI,
LiveRangeInfo& LRI,
AddedInstrns *const CallAI) const {
AddedInstrns *const CallAI,
PhyRegAlloc &PRA) const {
assert ( (UltraSparcInfo->getInstrInfo()).isCall(CallMI->getOpCode()) );
@ -502,30 +538,33 @@ void UltraSparcRegInfo::colorCallArgs(const MachineInstr *const CallMI,
// put copy instruction
if( !recvCorrectColor ) {
unsigned RegType = getRegType( RetValLR );
// the reg that LR must be colored with
unsigned UniRetReg = getUnifiedRegNum( RegClassID, CorrectCol);
if( RetValLR->hasColor() ) {
unsigned RegType = getRegType( RetValLR );
unsigned
UniRetLRReg=getUnifiedRegNum(RegClassID,RetValLR->getColor());
// the reg that LR must be colored with
unsigned UniRetReg = getUnifiedRegNum( RegClassID, CorrectCol);
// the return value is coming in UniRetReg but has to go into
// the UniRetLRReg
AdMI = cpReg2RegMI( UniRetReg, UniRetLRReg, RegType );
CallAI->InstrnsAfter.push_back( AdMI );
} // if LR has color
else {
// if the LR did NOT receive a color, we have to move the return
// value coming in UniRetReg to the stack pos of spilled LR
assert(0 && "LR of return value is splilled");
AdMI = cpReg2MemMI(UniRetReg, getFramePointer(),
RetValLR->getSpillOffFromFP(), RegType );
}
CallAI->InstrnsAfter.push_back( AdMI );
} // the LR didn't receive the suggested color
@ -600,18 +639,74 @@ void UltraSparcRegInfo::colorCallArgs(const MachineInstr *const CallMI,
if( isArgInReg )
AdMI = cpReg2RegMI(UniLRReg, UniArgReg, RegType );
else
assert(0 && "TODO: Push an outgoing arg on stack");
else {
// Now, we have to pass the arg on stack. Since LR received a register
// we just have to move that register to the stack position where
// the argument must be passed
// Now add the instruction
CallAI->InstrnsBefore.push_back( AdMI );
int ArgStakOffFromSP =
UltraSparcFrameInfo::FirstOutgoingArgOffsetFromSP +
argNo * SizeOfOperandOnStack;
AdMI = cpReg2MemMI(UniLRReg, getStackPointer(), ArgStakOffFromSP,
RegType );
}
CallAI->InstrnsBefore.push_back( AdMI ); // Now add the instruction
}
else { // LR is not colored (i.e., spilled)
assert(0 && "TODO: Copy a spilled call arg to an output reg ");
else { // LR is not colored (i.e., spilled)
if( isArgInReg ) {
// Now the LR did NOT recieve a register but has a stack poistion.
// Since, the outgoing arg goes in a register we just have to insert
// a load instruction to load the LR to outgoing register
AdMI = cpMem2RegMI(getStackPointer(), LR->getSpillOffFromFP(),
UniArgReg, RegType );
CallAI->InstrnsBefore.push_back( AdMI ); // Now add the instruction
}
else {
// Now, we have to pass the arg on stack. Since LR also did NOT
// receive a register we have to move an argument in memory to
// outgoing parameter on stack.
// Optoimize: Optimize when reverse pointers in MahineInstr are
// introduced.
// call PRA.getUnusedRegAtMI(....) to get an unused reg. Only if this
// fails, then use the following code. Currently, we cannot call the
// above method since we cannot find LVSetBefore without the BB
int TReg = PRA.getRegNotUsedByThisInst( LR->getRegClass(), CallMI );
int TmpOff = PRA.getStackOffsets().getNewTmpPosOffFromFP();
int ArgStakOffFromSP =
UltraSparcFrameInfo::FirstOutgoingArgOffsetFromSP +
argNo * SizeOfOperandOnStack;
MachineInstr *Ad1, *Ad2, *Ad3, *Ad4;
// Sequence:
// (1) Save TReg on stack
// (2) Load LR value into TReg from stack pos of LR
// (3) Store Treg on outgoing Arg pos on stack
// (4) Load the old value of TReg from stack to TReg (restore it)
Ad1 = cpReg2MemMI(TReg, getFramePointer(), TmpOff, RegType );
Ad2 = cpMem2RegMI(getFramePointer(), LR->getSpillOffFromFP(),
TReg, RegType );
Ad3 = cpReg2MemMI(TReg, getStackPointer(), ArgStakOffFromSP, RegType );
Ad4 = cpMem2RegMI(getFramePointer(), TmpOff, TReg, RegType );
CallAI->InstrnsBefore.push_back( Ad1 );
CallAI->InstrnsBefore.push_back( Ad2 );
CallAI->InstrnsBefore.push_back( Ad3 );
CallAI->InstrnsBefore.push_back( Ad4 );
}
}
} // for each parameter in call instruction
@ -658,8 +753,13 @@ void UltraSparcRegInfo::suggestReg4RetValue(const MachineInstr *const RetMI,
}
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
// Colors the return value of a method to %i0 or %f0, if possible. If it is
// not possilbe to directly color the LR, insert a copy instruction to move
// the LR to %i0 or %f0. When the LR is spilled, instead of the copy, we
// have to put a load instruction.
//---------------------------------------------------------------------------
void UltraSparcRegInfo::colorRetValue(const MachineInstr *const RetMI,
LiveRangeInfo& LRI,
@ -682,7 +782,7 @@ void UltraSparcRegInfo::colorRetValue(const MachineInstr *const RetMI,
cerr << endl;
// assert( LR && "No LR for return value of non-void method");
return;
}
}
unsigned RegClassID = getRegClassIDOfValue(RetVal);
unsigned RegType = getRegType( RetVal );
@ -720,9 +820,14 @@ void UltraSparcRegInfo::colorRetValue(const MachineInstr *const RetMI,
AdMI = cpReg2RegMI( UniLRReg, UniRetReg, RegType);
RetAI->InstrnsBefore.push_back( AdMI );
}
else
assert(0 && "TODO: Copy the return value from stack\n");
else { // if the LR is spilled
AdMI = cpMem2RegMI(getFramePointer(), LR->getSpillOffFromFP(),
UniRetReg, RegType);
RetAI->InstrnsBefore.push_back( AdMI );
cout << "\nCopied the return value from stack";
}
} // if there is a return value
}
@ -878,80 +983,115 @@ MachineInstr * UltraSparcRegInfo::cpMem2RegMI(const unsigned SrcPtrReg,
//----------------------------------------------------------------------------
// This method inserts caller saving/restoring instructons before/after
// a call machine instruction.
//----------------------------------------------------------------------------
void UltraSparcRegInfo::insertCallerSavingCode(const MachineInstr *MInst,
const BasicBlock *BB,
PhyRegAlloc &PRA) const {
// assert( (getInstrInfo()).isCall( MInst->getOpCode() ) );
//---------------------------------------------------------------------------
// Only constant/label values are accepted.
// ***This code is temporary ***
//---------------------------------------------------------------------------
PRA.StackOffsets.resetTmpPos();
hash_set<unsigned> PushedRegSet;
// Now find the LR of the return value of the call
// The last *implicit operand* is the return value of a call
// Insert it to to he PushedRegSet since we must not save that register
// and restore it after the call.
// We do this because, we look at the LV set *after* the instruction
// to determine, which LRs must be saved across calls. The return value
// of the call is live in this set - but we must not save/restore it.
MachineInstr * UltraSparcRegInfo::cpValue2RegMI(Value * Val,
const unsigned DestReg,
const int RegType) const {
const Value *RetVal = getCallInstRetVal( MInst );
assert( ((int)DestReg != InvalidRegNum) && "Invalid Register");
if( RetVal ) {
/*
unsigned MReg;
int64_t Imm;
LiveRange *RetValLR = PRA.LRI.getLiveRangeForValue( RetVal );
assert( RetValLR && "No LR for RetValue of call");
MachineOperand::MachineOperandType MOTypeInt =
ChooseRegOrImmed(Val, ADD, *UltraSparcInfo, true, MReg, Imm);
*/
MachineOperand::MachineOperandType MOType;
switch( Val->getValueType() ) {
case Value::ConstantVal:
case Value::GlobalVariableVal:
MOType = MachineOperand:: MO_UnextendedImmed; // TODO**** correct???
break;
case Value::BasicBlockVal:
case Value::MethodVal:
MOType = MachineOperand::MO_PCRelativeDisp;
break;
default:
cerr << "Value Type: " << Val->getValueType() << endl;
assert(0 && "Unknown val type - Only constants/globals/labels are valid");
PushedRegSet.insert(
getUnifiedRegNum((RetValLR->getRegClass())->getID(),
RetValLR->getColor() ) );
}
const LiveVarSet *LVSetAft = PRA.LVI->getLiveVarSetAfterMInst(MInst, BB);
MachineInstr * MI = NULL;
LiveVarSet::const_iterator LIt = LVSetAft->begin();
switch( RegType ) {
// for each live var in live variable set after machine inst
for( ; LIt != LVSetAft->end(); ++LIt) {
// get the live range corresponding to live var
LiveRange *const LR = PRA.LRI.getLiveRangeForValue(*LIt );
// LR can be null if it is a const since a const
// doesn't have a dominating def - see Assumptions above
if( LR ) {
if( LR->hasColor() ) {
unsigned RCID = (LR->getRegClass())->getID();
unsigned Color = LR->getColor();
if ( isRegVolatile(RCID, Color) ) {
// if the value is in both LV sets (i.e., live before and after
// the call machine instruction)
unsigned Reg = getUnifiedRegNum(RCID, Color);
if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
// if we haven't already pushed that register
unsigned RegType = getRegType( LR );
// Now get two instructions - to push on stack and pop from stack
// and add them to InstrnsBefore and InstrnsAfter of the
// call instruction
int StackOff = PRA.StackOffsets. getNewTmpPosOffFromFP();
/**** TODO - Handle IntCCRegType
}
*/
MachineInstr *AdIBef =
cpReg2MemMI(Reg, getStackPointer(), StackOff, RegType );
MachineInstr *AdIAft =
cpMem2RegMI(getStackPointer(), StackOff, Reg, RegType );
((PRA.AddedInstrMap[MInst])->InstrnsBefore).push_front(AdIBef);
((PRA.AddedInstrMap[MInst])->InstrnsAfter).push_back(AdIAft);
PushedRegSet.insert( Reg );
if(DEBUG_RA) {
cerr << "\nFor callee save call inst:" << *MInst;
cerr << "\n -inserted caller saving instrs:\n\t ";
cerr << *AdIBef << "\n\t" << *AdIAft ;
}
} // if not already pushed
} // if LR has a volatile color
} // if LR has color
} // if there is a LR for Var
case IntRegType:
MI = new MachineInstr(ADD);
MI->SetMachineOperand(0, MOType, Val, false);
MI->SetMachineOperand(1, SparcIntRegOrder::g0, false);
MI->SetMachineOperand(2, DestReg, true);
break;
case FPSingleRegType:
assert(0 && "FP const move not yet implemented");
MI = new MachineInstr(FMOVS);
MI->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, Val, false);
MI->SetMachineOperand(1, DestReg, true);
break;
case FPDoubleRegType:
assert(0 && "FP const move not yet implemented");
MI = new MachineInstr(FMOVD);
MI->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, Val, false);
MI->SetMachineOperand(1, DestReg, true);
break;
default:
assert(0 && "Unknow RegType");
}
return MI;
} // for each value in the LV set after instruction
}
@ -960,6 +1100,8 @@ MachineInstr * UltraSparcRegInfo::cpValue2RegMI(Value * Val,
//---------------------------------------------------------------------------
// Print the register assigned to a LR
//---------------------------------------------------------------------------