Basic runtime dynamic loading capabilities added to ELFObjectFile, implemented

in a subclass named DyldELFObject. This class supports rebasing the object file
it represents by re-mapping section addresses to the actual memory addresses
the object was placed in. This is required for MC-JIT implementation on ELF with
debugging support.

Patch reviewed on llvm-commits.

Developed together with Ashok Thirumurthi and Andrew Kaylor.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@148653 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eli Bendersky 2012-01-22 09:01:03 +00:00
parent 76463fdeb6
commit 24973c1063
3 changed files with 254 additions and 20 deletions

View File

@ -20,6 +20,7 @@
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cstring>
#include <vector>
namespace llvm {
namespace object {
@ -337,7 +338,8 @@ public:
public:
static ObjectFile *createCOFFObjectFile(MemoryBuffer *Object);
static ObjectFile *createELFObjectFile(MemoryBuffer *Object);
static ObjectFile *createELFObjectFile(MemoryBuffer *Object,
bool doDyld = false, std::vector<uint8_t*> *MemoryMap = 0);
static ObjectFile *createMachOObjectFile(MemoryBuffer *Object);
};

View File

@ -98,6 +98,9 @@ public:
operator value_type() const {
return endian::read_le<value_type, unaligned>(Value);
}
void operator=(value_type newValue) {
endian::write_le<value_type, unaligned>((void *)&Value, newValue);
}
private:
uint8_t Value[sizeof(value_type)];
};
@ -108,6 +111,9 @@ public:
operator value_type() const {
return endian::read_be<value_type, unaligned>(Value);
}
void operator=(value_type newValue) {
endian::write_be<value_type, unaligned>((void *)&Value, newValue);
}
private:
uint8_t Value[sizeof(value_type)];
};
@ -118,6 +124,9 @@ public:
operator value_type() const {
return endian::read_le<value_type, aligned>(&Value);
}
void operator=(value_type newValue) {
endian::write_le<value_type, aligned>((void *)&Value, newValue);
}
private:
value_type Value;
};
@ -128,6 +137,9 @@ public:
operator value_type() const {
return endian::read_be<value_type, aligned>(&Value);
}
void operator=(value_type newValue) {
endian::write_be<value_type, aligned>((void *)&Value, newValue);
}
private:
value_type Value;
};

View File

@ -7,7 +7,7 @@
//
//===----------------------------------------------------------------------===//
//
// This file defines the ELFObjectFile class.
// This file defines the ELFObjectFile and DyldELFObject classes.
//
//===----------------------------------------------------------------------===//
@ -16,6 +16,7 @@
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
@ -53,20 +54,22 @@ struct ELFDataTypeTypedefHelper;
template<support::endianness target_endianness>
struct ELFDataTypeTypedefHelper<target_endianness, false>
: ELFDataTypeTypedefHelperCommon<target_endianness> {
typedef uint32_t value_type;
typedef support::detail::packed_endian_specific_integral
<uint32_t, target_endianness, support::aligned> Elf_Addr;
<value_type, target_endianness, support::aligned> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<uint32_t, target_endianness, support::aligned> Elf_Off;
<value_type, target_endianness, support::aligned> Elf_Off;
};
/// ELF 64bit types.
template<support::endianness target_endianness>
struct ELFDataTypeTypedefHelper<target_endianness, true>
: ELFDataTypeTypedefHelperCommon<target_endianness>{
typedef uint64_t value_type;
typedef support::detail::packed_endian_specific_integral
<uint64_t, target_endianness, support::aligned> Elf_Addr;
<value_type, target_endianness, support::aligned> Elf_Addr;
typedef support::detail::packed_endian_specific_integral
<uint64_t, target_endianness, support::aligned> Elf_Off;
<value_type, target_endianness, support::aligned> Elf_Off;
};
}
@ -263,6 +266,7 @@ class ELFObjectFile : public ObjectFile {
typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
protected:
struct Elf_Ehdr {
unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
Elf_Half e_type; // Type of file (see ET_*)
@ -285,7 +289,12 @@ class ELFObjectFile : public ObjectFile {
unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};
// This flag is used for classof, to distinguish ELFObjectFile from
// its subclass. If more subclasses will be created, this flag will
// have to become an enum.
bool isDyldELFObject;
private:
typedef SmallVector<const Elf_Shdr*, 1> Sections_t;
typedef DenseMap<unsigned, unsigned> IndexMap_t;
typedef DenseMap<const Elf_Shdr*, SmallVector<uint32_t, 1> > RelocMap_t;
@ -307,13 +316,11 @@ class ELFObjectFile : public ObjectFile {
return getSection(Rel.w.b);
}
void validateSymbol(DataRefImpl Symb) const;
bool isRelocationHasAddend(DataRefImpl Rel) const;
template<typename T>
const T *getEntry(uint16_t Section, uint32_t Entry) const;
template<typename T>
const T *getEntry(const Elf_Shdr *Section, uint32_t Entry) const;
const Elf_Sym *getSymbol(DataRefImpl Symb) const;
const Elf_Shdr *getSection(DataRefImpl index) const;
const Elf_Shdr *getSection(uint32_t index) const;
const Elf_Rel *getRel(DataRefImpl Rel) const;
@ -322,6 +329,10 @@ class ELFObjectFile : public ObjectFile {
const char *getString(const Elf_Shdr *section, uint32_t offset) const;
error_code getSymbolName(const Elf_Sym *Symb, StringRef &Res) const;
protected:
const Elf_Sym *getSymbol(DataRefImpl Symb) const; // FIXME: Should be private?
void validateSymbol(DataRefImpl Symb) const;
protected:
virtual error_code getSymbolNext(DataRefImpl Symb, SymbolRef &Res) const;
virtual error_code getSymbolName(DataRefImpl Symb, StringRef &Res) const;
@ -384,8 +395,10 @@ public:
ELF::Elf64_Word getSymbolTableIndex(const Elf_Sym *symb) const;
const Elf_Shdr *getSection(const Elf_Sym *symb) const;
// Methods for type inquiry through isa, cast, and dyn_cast
bool isDyldType() const { return isDyldELFObject; }
static inline bool classof(const Binary *v) {
return v->getType() == isELF;
return v->getType() == Binary::isELF;
}
static inline bool classof(const ELFObjectFile *v) { return true; }
};
@ -471,7 +484,7 @@ error_code ELFObjectFile<target_endianness, is64Bits>
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
// Undefined symbols have no address yet.
// Unintialized symbols have no offset in the object file
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
@ -489,7 +502,7 @@ error_code ELFObjectFile<target_endianness, is64Bits>
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
Result = symb->st_value +
(Section ? Section->sh_offset - Section->sh_addr : 0);
(Section ? Section->sh_offset : 0);
return object_error::success;
default:
Result = UnknownAddressOrSize;
@ -506,7 +519,6 @@ error_code ELFObjectFile<target_endianness, is64Bits>
const Elf_Shdr *Section;
switch (getSymbolTableIndex(symb)) {
case ELF::SHN_COMMON:
// Undefined symbols have no address yet.
case ELF::SHN_UNDEF:
Result = UnknownAddressOrSize;
return object_error::success;
@ -523,7 +535,7 @@ error_code ELFObjectFile<target_endianness, is64Bits>
case ELF::STT_FUNC:
case ELF::STT_OBJECT:
case ELF::STT_NOTYPE:
Result = symb->st_value;
Result = symb->st_value + (Section ? Section->sh_addr : 0);
return object_error::success;
default:
Result = UnknownAddressOrSize;
@ -1157,6 +1169,7 @@ template<support::endianness target_endianness, bool is64Bits>
ELFObjectFile<target_endianness, is64Bits>::ELFObjectFile(MemoryBuffer *Object
, error_code &ec)
: ObjectFile(Binary::isELF, Object, ec)
, isDyldELFObject(false)
, SectionHeaderTable(0)
, dot_shstrtab_sec(0)
, dot_strtab_sec(0) {
@ -1168,10 +1181,12 @@ ELFObjectFile<target_endianness, is64Bits>::ELFObjectFile(MemoryBuffer *Object
SectionHeaderTable =
reinterpret_cast<const Elf_Shdr *>(base() + Header->e_shoff);
uint64_t SectionTableSize = getNumSections() * Header->e_shentsize;
if (!( (const uint8_t *)SectionHeaderTable + SectionTableSize
<= base() + Data->getBufferSize()))
if ((const uint8_t *)SectionHeaderTable + SectionTableSize
> base() + Data->getBufferSize()) {
// FIXME: Proper error handling.
report_fatal_error("Section table goes past end of file!");
}
// To find the symbol tables we walk the section table to find SHT_SYMTAB.
@ -1466,21 +1481,226 @@ getElfArchType(MemoryBuffer *Object) {
, (uint8_t)Object->getBufferStart()[ELF::EI_DATA]);
}
namespace {
template<support::endianness target_endianness, bool is64Bits>
class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
typedef typename ELFObjectFile<target_endianness, is64Bits>::
Elf_Ehdr Elf_Ehdr;
Elf_Ehdr *Header;
// Update section headers according to the current location in memory
virtual void rebaseObject(std::vector<uint8_t*> *MemoryMap);
// Record memory addresses for cleanup
virtual void saveAddress(std::vector<uint8_t*> *MemoryMap, uint8_t *addr);
protected:
virtual error_code getSymbolAddress(DataRefImpl Symb, uint64_t &Res) const;
public:
DyldELFObject(MemoryBuffer *Object, std::vector<uint8_t*> *MemoryMap,
error_code &ec);
// Methods for type inquiry through isa, cast, and dyn_cast
static inline bool classof(const Binary *v) {
return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
&& classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
}
static inline bool classof(
const ELFObjectFile<target_endianness, is64Bits> *v) {
return v->isDyldType();
}
static inline bool classof(const DyldELFObject *v) {
return true;
}
};
} // end anonymous namespace
template<support::endianness target_endianness, bool is64Bits>
DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Object,
std::vector<uint8_t*> *MemoryMap, error_code &ec)
: ELFObjectFile<target_endianness, is64Bits>(Object, ec)
, Header(0) {
this->isDyldELFObject = true;
Header = const_cast<Elf_Ehdr *>(
reinterpret_cast<const Elf_Ehdr *>(this->base()));
if (Header->e_shoff == 0)
return;
// Mark the image as a dynamic shared library
Header->e_type = ELF::ET_DYN;
rebaseObject(MemoryMap);
}
// Walk through the ELF headers, updating virtual addresses to reflect where
// the object is currently loaded in memory
template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::rebaseObject(
std::vector<uint8_t*> *MemoryMap) {
typedef typename ELFDataTypeTypedefHelper<
target_endianness, is64Bits>::value_type addr_type;
uint8_t *base_p = const_cast<uint8_t *>(this->base());
Elf_Shdr *sectionTable =
reinterpret_cast<Elf_Shdr *>(base_p + Header->e_shoff);
uint64_t numSections = this->getNumSections();
// Allocate memory space for NOBITS sections (such as .bss), which only exist
// in memory, but don't occupy space in the object file.
// Update the address in the section headers to reflect this allocation.
for (uint64_t index = 0; index < numSections; index++) {
Elf_Shdr *sec = reinterpret_cast<Elf_Shdr *>(
reinterpret_cast<char *>(sectionTable) + index * Header->e_shentsize);
// Only update sections that are meant to be present in program memory
if (sec->sh_flags & ELF::SHF_ALLOC) {
uint8_t *addr = base_p + sec->sh_offset;
if (sec->sh_type == ELF::SHT_NOBITS) {
addr = static_cast<uint8_t *>(calloc(sec->sh_size, 1));
saveAddress(MemoryMap, addr);
}
else {
// FIXME: Currently memory with RWX permissions is allocated. In the
// future, make sure that permissions are as necessary
if (sec->sh_flags & ELF::SHF_WRITE) {
// see FIXME above
}
if (sec->sh_flags & ELF::SHF_EXECINSTR) {
// see FIXME above
}
}
assert(sizeof(addr_type) == sizeof(intptr_t) &&
"Cross-architecture ELF dy-load is not supported!");
sec->sh_addr = static_cast<addr_type>(intptr_t(addr));
}
}
// Now allocate actual space for COMMON symbols, which also don't occupy
// space in the object file.
// We want to allocate space for all COMMON symbols at once, so the flow is:
// 1. Go over all symbols, find those that are in COMMON. For each such
// symbol, record its size and the value field in its symbol header in a
// special vector.
// 2. Allocate memory for all COMMON symbols in one fell swoop.
// 3. Using the recorded information from (1), update the address fields in
// the symbol headers of the COMMON symbols to reflect their allocated
// address.
uint64_t TotalSize = 0;
std::vector<std::pair<Elf_Addr *, uint64_t> > SymbAddrInfo;
error_code ec = object_error::success;
for (symbol_iterator si = this->begin_symbols(),
se = this->end_symbols(); si != se; si.increment(ec)) {
uint64_t Size = 0;
ec = si->getSize(Size);
Elf_Sym* symb = const_cast<Elf_Sym*>(
this->getSymbol(si->getRawDataRefImpl()));
if (ec == object_error::success &&
this->getSymbolTableIndex(symb) == ELF::SHN_COMMON && Size > 0) {
SymbAddrInfo.push_back(std::make_pair(&(symb->st_value), Size));
TotalSize += Size;
}
}
uint8_t* SectionPtr = (uint8_t *)calloc(TotalSize, 1);
saveAddress(MemoryMap, SectionPtr);
typedef typename std::vector<std::pair<Elf_Addr *, uint64_t> >::iterator
AddrInfoIterator;
AddrInfoIterator EndIter = SymbAddrInfo.end();
for (AddrInfoIterator AddrIter = SymbAddrInfo.begin();
AddrIter != EndIter; ++AddrIter) {
assert(sizeof(addr_type) == sizeof(intptr_t) &&
"Cross-architecture ELF dy-load is not supported!");
*(AddrIter->first) = static_cast<addr_type>(intptr_t(SectionPtr));
SectionPtr += AddrIter->second;
}
}
// Record memory addresses for callers
template<support::endianness target_endianness, bool is64Bits>
void DyldELFObject<target_endianness, is64Bits>::saveAddress(
std::vector<uint8_t*> *MemoryMap, uint8_t* addr) {
if (MemoryMap)
MemoryMap->push_back(addr);
else
errs() << "WARNING: Memory leak - cannot record memory for ELF dyld.";
}
template<support::endianness target_endianness, bool is64Bits>
error_code DyldELFObject<target_endianness, is64Bits>::getSymbolAddress(
DataRefImpl Symb, uint64_t &Result) const {
this->validateSymbol(Symb);
const Elf_Sym *symb = this->getSymbol(Symb);
if (this->getSymbolTableIndex(symb) == ELF::SHN_COMMON) {
Result = symb->st_value;
return object_error::success;
}
else {
return ELFObjectFile<target_endianness, is64Bits>::getSymbolAddress(
Symb, Result);
}
}
namespace llvm {
ObjectFile *ObjectFile::createELFObjectFile(MemoryBuffer *Object) {
// Creates an in-memory object-file by default: createELFObjectFile(Buffer)
// Set doDyld to true to create a live (executable/debug-worthy) image
// If doDyld is true, any memory allocated for non-resident sections and
// symbols is recorded in MemoryMap.
ObjectFile *ObjectFile::createELFObjectFile(MemoryBuffer *Object,
bool doDyld, std::vector<uint8_t *> *MemoryMap) {
std::pair<unsigned char, unsigned char> Ident = getElfArchType(Object);
error_code ec;
if (doDyld) {
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB)
return new DyldELFObject<support::little, false>(Object, MemoryMap, ec);
else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB)
return new DyldELFObject<support::big, false>(Object, MemoryMap, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB)
return new DyldELFObject<support::big, true>(Object, MemoryMap, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
DyldELFObject<support::little, true> *result =
new DyldELFObject<support::little, true>(Object, MemoryMap, ec);
// Unit testing for type inquiry
bool isBinary = isa<Binary>(result);
bool isDyld = isa<DyldELFObject<support::little, true> >(result);
bool isFile = isa<ELFObjectFile<support::little, true> >(result);
assert(isBinary && isDyld && isFile &&
"Type inquiry failed for ELF object!");
return result;
}
}
if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB)
return new ELFObjectFile<support::little, false>(Object, ec);
else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB)
return new ELFObjectFile<support::big, false>(Object, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB)
return new ELFObjectFile<support::little, true>(Object, ec);
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB)
return new ELFObjectFile<support::big, true>(Object, ec);
// FIXME: Proper error handling.
report_fatal_error("Not an ELF object file!");
else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
ELFObjectFile<support::little, true> *result =
new ELFObjectFile<support::little, true>(Object, ec);
// Unit testing for type inquiry
bool isBinary = isa<Binary>(result);
bool isDyld = isa<DyldELFObject<support::little, true> >(result);
bool isFile = isa<ELFObjectFile<support::little, true> >(result);
assert(isBinary && isFile && !isDyld &&
"Type inquiry failed for ELF object!");
return result;
}
report_fatal_error("Buffer is not an ELF object file!");
}
} // end namespace llvm