For PR970:

Clean up handling of isFloatingPoint() and dealing with PackedType.
Patch by Gordon Henriksen!


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33415 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2007-01-21 00:29:26 +00:00
parent 67f827ce5b
commit 24d6da5fed
13 changed files with 119 additions and 150 deletions

View File

@ -2867,7 +2867,7 @@ used to make a <i>no-op cast</i> because it always changes bits. Use
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection">
<a name="i_fp2uint">'<tt>fptoui .. to</tt>' Instruction</a>
<a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
</div>
<div class="doc_text">
@ -3270,9 +3270,6 @@ yields a <a href="#t_primitive">i1</a> result, as follows:
<li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
<li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
</ol>
<p>If the operands are <a href="#t_packed">packed</a> typed, the elements of
the vector are compared in turn and the predicate must hold for all elements.
</p>
<h5>Example:</h5>
<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>

View File

@ -60,8 +60,7 @@ namespace llvm {
/// loop (inserting one if there is none). A canonical induction variable
/// starts at zero and steps by one on each iteration.
Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
"Can only insert integer or floating point induction variables!");
assert(Ty->isInteger() && "Can only insert integer induction variables!");
SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
SCEVUnknown::getIntegerSCEV(1, Ty), L);
return expand(H);

View File

@ -36,7 +36,7 @@ template<class ConstantClass, class TypeClass>
struct ConvertConstantType;
//===----------------------------------------------------------------------===//
/// This is the shared class of boolean and integrer constants. This class
/// This is the shared class of boolean and integer constants. This class
/// represents both boolean and integral constants.
/// @brief Class for constant integers.
class ConstantInt : public Constant {
@ -585,6 +585,11 @@ public:
static Constant *getInsertElement(Constant *Vec, Constant *Elt,Constant *Idx);
static Constant *getShuffleVector(Constant *V1, Constant *V2, Constant *Mask);
/// Floating point negation must be implemented with f(x) = -0.0 - x. This
/// method returns the negative zero constant for floating point or packed
/// floating point types; for all other types, it returns the null value.
static Constant *getZeroValueForNegationExpr(const Type *Ty);
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue.
virtual bool isNullValue() const { return false; }

View File

@ -305,37 +305,6 @@ m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
// Matchers for unary operators
//
template<typename LHS_t>
struct neg_match {
LHS_t L;
neg_match(const LHS_t &LHS) : L(LHS) {}
template<typename OpTy>
bool match(OpTy *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Sub)
return matchIfNeg(I->getOperand(0), I->getOperand(1));
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
if (CE->getOpcode() == Instruction::Sub)
return matchIfNeg(CE->getOperand(0), CE->getOperand(1));
if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
return L.match(ConstantExpr::getNeg(CI));
return false;
}
private:
bool matchIfNeg(Value *LHS, Value *RHS) {
if (!LHS->getType()->isFloatingPoint())
return LHS == Constant::getNullValue(LHS->getType()) && L.match(RHS);
else
return LHS == ConstantFP::get(LHS->getType(), -0.0) && L.match(RHS);
}
};
template<typename LHS>
inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
template<typename LHS_t>
struct not_match {
LHS_t L;

View File

@ -123,8 +123,7 @@ Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
// Insert a unit add instruction right before the terminator corresponding
// to the back-edge.
Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
: ConstantInt::get(Ty, 1);
Constant *One = ConstantInt::get(Ty, 1);
Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
(*HPI)->getTerminator());

View File

@ -499,32 +499,37 @@ public:
void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
void visitIntBinary(User &I, unsigned IntOp, unsigned VecOp);
void visitFPBinary(User &I, unsigned FPOp, unsigned VecOp);
void visitScalarBinary(User &I, unsigned OpCode);
void visitVectorBinary(User &I, unsigned OpCode);
void visitEitherBinary(User &I, unsigned ScalarOp, unsigned VectorOp);
void visitShift(User &I, unsigned Opcode);
void visitAdd(User &I) {
if (I.getType()->isFloatingPoint())
visitFPBinary(I, ISD::FADD, ISD::VADD);
if (isa<PackedType>(I.getType()))
visitVectorBinary(I, ISD::VADD);
else if (I.getType()->isFloatingPoint())
visitScalarBinary(I, ISD::FADD);
else
visitIntBinary(I, ISD::ADD, ISD::VADD);
visitScalarBinary(I, ISD::ADD);
}
void visitSub(User &I);
void visitMul(User &I) {
if (I.getType()->isFloatingPoint())
visitFPBinary(I, ISD::FMUL, ISD::VMUL);
if (isa<PackedType>(I.getType()))
visitVectorBinary(I, ISD::VMUL);
else if (I.getType()->isFloatingPoint())
visitScalarBinary(I, ISD::FMUL);
else
visitIntBinary(I, ISD::MUL, ISD::VMUL);
visitScalarBinary(I, ISD::MUL);
}
void visitURem(User &I) { visitIntBinary(I, ISD::UREM, 0); }
void visitSRem(User &I) { visitIntBinary(I, ISD::SREM, 0); }
void visitFRem(User &I) { visitFPBinary (I, ISD::FREM, 0); }
void visitUDiv(User &I) { visitIntBinary(I, ISD::UDIV, ISD::VUDIV); }
void visitSDiv(User &I) { visitIntBinary(I, ISD::SDIV, ISD::VSDIV); }
void visitFDiv(User &I) { visitFPBinary (I, ISD::FDIV, ISD::VSDIV); }
void visitAnd(User &I) { visitIntBinary(I, ISD::AND, ISD::VAND); }
void visitOr (User &I) { visitIntBinary(I, ISD::OR, ISD::VOR); }
void visitXor(User &I) { visitIntBinary(I, ISD::XOR, ISD::VXOR); }
void visitShl(User &I) { visitShift(I, ISD::SHL); }
void visitURem(User &I) { visitScalarBinary(I, ISD::UREM); }
void visitSRem(User &I) { visitScalarBinary(I, ISD::SREM); }
void visitFRem(User &I) { visitScalarBinary(I, ISD::FREM); }
void visitUDiv(User &I) { visitEitherBinary(I, ISD::UDIV, ISD::VUDIV); }
void visitSDiv(User &I) { visitEitherBinary(I, ISD::SDIV, ISD::VSDIV); }
void visitFDiv(User &I) { visitEitherBinary(I, ISD::FDIV, ISD::VSDIV); }
void visitAnd (User &I) { visitEitherBinary(I, ISD::AND, ISD::VAND ); }
void visitOr (User &I) { visitEitherBinary(I, ISD::OR, ISD::VOR ); }
void visitXor (User &I) { visitEitherBinary(I, ISD::XOR, ISD::VXOR ); }
void visitShl (User &I) { visitShift(I, ISD::SHL); }
void visitLShr(User &I) { visitShift(I, ISD::SRL); }
void visitAShr(User &I) { visitShift(I, ISD::SRA); }
void visitICmp(User &I);
@ -1369,46 +1374,47 @@ void SelectionDAGLowering::visitSwitch(SwitchInst &I) {
void SelectionDAGLowering::visitSub(User &I) {
// -0.0 - X --> fneg
if (I.getType()->isFloatingPoint()) {
const Type *Ty = I.getType();
if (isa<PackedType>(Ty)) {
visitVectorBinary(I, ISD::VSUB);
} else if (Ty->isFloatingPoint()) {
if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
if (CFP->isExactlyValue(-0.0)) {
SDOperand Op2 = getValue(I.getOperand(1));
setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
return;
}
visitFPBinary(I, ISD::FSUB, ISD::VSUB);
visitScalarBinary(I, ISD::FSUB);
} else
visitIntBinary(I, ISD::SUB, ISD::VSUB);
visitScalarBinary(I, ISD::SUB);
}
void
SelectionDAGLowering::visitIntBinary(User &I, unsigned IntOp, unsigned VecOp) {
const Type *Ty = I.getType();
void SelectionDAGLowering::visitScalarBinary(User &I, unsigned OpCode) {
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
} else {
setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
}
setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
}
void
SelectionDAGLowering::visitFPBinary(User &I, unsigned FPOp, unsigned VecOp) {
const Type *Ty = I.getType();
SDOperand Op1 = getValue(I.getOperand(0));
SDOperand Op2 = getValue(I.getOperand(1));
void
SelectionDAGLowering::visitVectorBinary(User &I, unsigned OpCode) {
assert(isa<PackedType>(I.getType()));
const PackedType *Ty = cast<PackedType>(I.getType());
SDOperand Typ = DAG.getValueType(TLI.getValueType(Ty->getElementType()));
if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
SDOperand Num = DAG.getConstant(PTy->getNumElements(), MVT::i32);
SDOperand Typ = DAG.getValueType(TLI.getValueType(PTy->getElementType()));
setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
} else {
setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
}
setValue(&I, DAG.getNode(OpCode, MVT::Vector,
getValue(I.getOperand(0)),
getValue(I.getOperand(1)),
DAG.getConstant(Ty->getNumElements(), MVT::i32),
Typ));
}
void SelectionDAGLowering::visitEitherBinary(User &I, unsigned ScalarOp,
unsigned VectorOp) {
if (isa<PackedType>(I.getType()))
visitVectorBinary(I, VectorOp);
else
visitScalarBinary(I, ScalarOp);
}
void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {

View File

@ -1498,7 +1498,7 @@ GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, const Type *DstTy,
const IntegerType *SITy = cast<IntegerType>(SrcTy);
unsigned SBitWidth = SITy->getBitWidth();
assert(SBitWidth <= 64 && "Integer types > 64 bits not supported");
assert(DstTy->isFloatingPoint() && "Invalid UIToFP instruction");
assert(DstTy->isFloatingPoint() && "Invalid SIToFP instruction");
int64_t Converted = 0;
if (SBitWidth == 1)
Converted = 0LL - Src.Int1Val;

View File

@ -576,8 +576,8 @@ static bool OperandConvertibleToType(User *U, Value *V, const Type *Ty,
// Can convert store if the incoming value is convertible and if the
// result will preserve semantics...
const Type *Op0Ty = I->getOperand(0)->getType();
if (!(Op0Ty->isInteger() ^ ElTy->isInteger()) &&
!(Op0Ty->isFloatingPoint() ^ ElTy->isFloatingPoint()))
if (Op0Ty->isInteger() == ElTy->isInteger() &&
Op0Ty->isFloatingPoint() == ElTy->isFloatingPoint())
return ExpressionConvertibleToType(I->getOperand(0), ElTy, CTMap, TD);
}
return false;

View File

@ -1343,6 +1343,7 @@ bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
if (GV->getType()->getElementType() != Type::Int1Ty &&
!GV->getType()->getElementType()->isFloatingPoint() &&
!isa<PackedType>(GV->getType()->getElementType()) &&
!GS.HasPHIUser) {
DOUT << " *** SHRINKING TO BOOL: " << *GV;
ShrinkGlobalToBoolean(GV, SOVConstant);

View File

@ -186,11 +186,7 @@ static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
/// LowerNegateToMultiply - Replace 0-X with X*-1.
///
static Instruction *LowerNegateToMultiply(Instruction *Neg) {
Constant *Cst;
if (Neg->getType()->isFloatingPoint())
Cst = ConstantFP::get(Neg->getType(), -1);
else
Cst = ConstantInt::getAllOnesValue(Neg->getType());
Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
std::string NegName = Neg->getName(); Neg->setName("");
Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
@ -661,32 +657,32 @@ Value *Reassociate::OptimizeExpression(BinaryOperator *I,
std::map<Value*, unsigned> FactorOccurrences;
unsigned MaxOcc = 0;
Value *MaxOccVal = 0;
if (!I->getType()->isFloatingPoint()) {
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
// Compute all of the factors of this added value.
std::vector<Value*> Factors;
FindSingleUseMultiplyFactors(BOp, Factors);
assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op.
if (Factors.size() == 2) {
unsigned Occ = ++FactorOccurrences[Factors[0]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
if (Factors[0] != Factors[1]) { // Don't double count A*A.
Occ = ++FactorOccurrences[Factors[1]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
// Compute all of the factors of this added value.
std::vector<Value*> Factors;
FindSingleUseMultiplyFactors(BOp, Factors);
assert(Factors.size() > 1 && "Bad linearize!");
// Add one to FactorOccurrences for each unique factor in this op.
if (Factors.size() == 2) {
unsigned Occ = ++FactorOccurrences[Factors[0]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
if (Factors[0] != Factors[1]) { // Don't double count A*A.
Occ = ++FactorOccurrences[Factors[1]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
}
} else {
std::set<Value*> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
if (Duplicates.insert(Factors[i]).second) {
unsigned Occ = ++FactorOccurrences[Factors[i]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
}
} else {
std::set<Value*> Duplicates;
for (unsigned i = 0, e = Factors.size(); i != e; ++i)
if (Duplicates.insert(Factors[i]).second) {
unsigned Occ = ++FactorOccurrences[Factors[i]];
if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
}
}
}
}
}
}

View File

@ -519,7 +519,7 @@ const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
return 0;
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
// Storing the pointer, not the into the value?
// Storing the pointer, not into the value?
if (SI->getOperand(0) == V) return 0;
// NOTE: We could handle storing of FP imms into integers here!

View File

@ -378,10 +378,9 @@ bool ConstantExpr::isCompare() const {
/// specify the full Instruction::OPCODE identifier.
///
Constant *ConstantExpr::getNeg(Constant *C) {
if (!C->getType()->isFloatingPoint())
return get(Instruction::Sub, getNullValue(C->getType()), C);
else
return get(Instruction::Sub, ConstantFP::get(C->getType(), -0.0), C);
return get(Instruction::Sub,
ConstantExpr::getZeroValueForNegationExpr(C->getType()),
C);
}
Constant *ConstantExpr::getNot(Constant *C) {
assert(isa<ConstantInt>(C) && "Cannot NOT a nonintegral type!");
@ -1882,6 +1881,20 @@ Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
return getShuffleVectorTy(V1->getType(), V1, V2, Mask);
}
Constant *ConstantExpr::getZeroValueForNegationExpr(const Type *Ty) {
if ((const PackedType *PTy = dyn_cast<PackedType>(Ty)) &&
PTy->getElementType()->isFloatingPoint()) {
std::vector<Constant*> zeros(PTy->getNumElements(),
ConstantFP::get(PTy->getElementType(), -0.0));
return ConstantPacked::get(PTy, zeros);
}
if (Ty->isFloatingPoint())
return ConstantFP::get(Ty, -0.0);
return Constant::getNullValue(Ty);
}
// destroyConstant - Remove the constant from the constant table...
//
void ConstantExpr::destroyConstant() {

View File

@ -1092,26 +1092,18 @@ BinaryOperator *BinaryOperator::create(BinaryOps Op, Value *S1, Value *S2,
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
Instruction *InsertBefore) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertBefore);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertBefore);
Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::createNeg(Value *Op, const std::string &Name,
BasicBlock *InsertAtEnd) {
if (!Op->getType()->isFloatingPoint())
return new BinaryOperator(Instruction::Sub,
Constant::getNullValue(Op->getType()), Op,
Op->getType(), Name, InsertAtEnd);
else
return new BinaryOperator(Instruction::Sub,
ConstantFP::get(Op->getType(), -0.0), Op,
Op->getType(), Name, InsertAtEnd);
Value *zero = ConstantExpr::getZeroValueForNegationExpr(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::createNot(Value *Op, const std::string &Name,
@ -1153,10 +1145,8 @@ static inline bool isConstantAllOnes(const Value *V) {
bool BinaryOperator::isNeg(const Value *V) {
if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
if (Bop->getOpcode() == Instruction::Sub)
if (!V->getType()->isFloatingPoint())
return Bop->getOperand(0) == Constant::getNullValue(Bop->getType());
else
return Bop->getOperand(0) == ConstantFP::get(Bop->getType(), -0.0);
return Bop->getOperand(0) ==
ConstantExpr::getZeroValueForNegationExpr(Bop->getType());
return false;
}
@ -1913,9 +1903,7 @@ CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
assert(Op0Ty == Op1Ty &&
"Both operands to ICmp instruction are not of the same type!");
// Check that the operands are the right type
assert(Op0Ty->isInteger() || isa<PointerType>(Op0Ty) ||
(isa<PackedType>(Op0Ty) &&
cast<PackedType>(Op0Ty)->getElementType()->isInteger()) &&
assert((Op0Ty->isInteger() || isa<PointerType>(Op0Ty)) &&
"Invalid operand types for ICmp instruction");
return;
}
@ -1927,8 +1915,7 @@ CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
assert(Op0Ty == Op1Ty &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(Op0Ty->isFloatingPoint() || (isa<PackedType>(Op0Ty) &&
cast<PackedType>(Op0Ty)->getElementType()->isFloatingPoint()) &&
assert(Op0Ty->isFloatingPoint() &&
"Invalid operand types for FCmp instruction");
}
@ -1948,9 +1935,7 @@ CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
assert(Op0Ty == Op1Ty &&
"Both operands to ICmp instruction are not of the same type!");
// Check that the operands are the right type
assert(Op0Ty->isInteger() || isa<PointerType>(Op0Ty) ||
(isa<PackedType>(Op0Ty) &&
cast<PackedType>(Op0Ty)->getElementType()->isInteger()) &&
assert(Op0Ty->isInteger() || isa<PointerType>(Op0Ty) &&
"Invalid operand types for ICmp instruction");
return;
}
@ -1962,8 +1947,7 @@ CmpInst::CmpInst(OtherOps op, unsigned short predicate, Value *LHS, Value *RHS,
assert(Op0Ty == Op1Ty &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(Op0Ty->isFloatingPoint() || (isa<PackedType>(Op0Ty) &&
cast<PackedType>(Op0Ty)->getElementType()->isFloatingPoint()) &&
assert(Op0Ty->isFloatingPoint() &&
"Invalid operand types for FCmp instruction");
}