HTML cleanup and validation.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108239 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Benjamin Kramer 2010-07-13 12:26:09 +00:00
parent 28afd4306a
commit 26fe25f651

View File

@ -370,11 +370,9 @@
what is considered 'well formed'. For example, the following instruction is
syntactically okay, but not well formed:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%x = <a href="#i_add">add</a> i32 1, %x
</pre>
</div>
<p>because the definition of <tt>%x</tt> does not dominate all of its uses. The
LLVM infrastructure provides a verification pass that may be used to verify
@ -437,29 +435,23 @@
<p>The easy way:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%result = <a href="#i_mul">mul</a> i32 %X, 8
</pre>
</div>
<p>After strength reduction:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%result = <a href="#i_shl">shl</a> i32 %X, i8 3
</pre>
</div>
<p>And the hard way:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%0 = <a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
%1 = <a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
%result = <a href="#i_add">add</a> i32 %1, %1
</pre>
</div>
<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several important
lexical features of LLVM:</p>
@ -498,8 +490,7 @@
forward declarations, and merges symbol table entries. Here is an example of
the "hello world" module:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
<i>; Declare the string constant as a global constant.</i>
<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
@ -519,7 +510,6 @@ define i32 @main() { <i>; i32()* </i>
!1 = metadata !{i32 41}
!foo = !{!1, null}
</pre>
</div>
<p>This example is made up of a <a href="#globalvars">global variable</a> named
"<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>" function,
@ -793,11 +783,9 @@ define i32 @main() { <i>; i32()* </i>
it easier to read the IR and make the IR more condensed (particularly when
recursive types are involved). An example of a name specification is:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%mytype = type { %mytype*, i32 }
</pre>
</div>
<p>You may give a name to any <a href="#typesystem">type</a> except
"<a href="t_void">void</a>". Type name aliases may be used anywhere a type
@ -869,11 +857,9 @@ define i32 @main() { <i>; i32()* </i>
<p>For example, the following defines a global in a numbered address space with
an initializer, section, and alignment:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
@G = addrspace(5) constant float 1.0, section "foo", align 4
</pre>
</div>
</div>
@ -926,15 +912,13 @@ define i32 @main() { <i>; i32()* </i>
alignments must be a power of 2.</p>
<h5>Syntax:</h5>
<div class="doc_code">
<pre>
<pre class="doc_code">
define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
[<a href="#callingconv">cconv</a>] [<a href="#paramattrs">ret attrs</a>]
&lt;ResultType&gt; @&lt;FunctionName&gt; ([argument list])
[<a href="#fnattrs">fn Attrs</a>] [section "name"] [align N]
[<a href="#gc">gc</a>] { ... }
</pre>
</div>
</div>
@ -951,11 +935,9 @@ define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
optional <a href="#visibility">visibility style</a>.</p>
<h5>Syntax:</h5>
<div class="doc_code">
<pre>
<pre class="doc_code">
@&lt;Name&gt; = alias [Linkage] [Visibility] &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
</pre>
</div>
</div>
@ -971,12 +953,10 @@ define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
a named metadata.</p>
<h5>Syntax:</h5>
<div class="doc_code">
<pre>
<pre class="doc_code">
!1 = metadata !{metadata !"one"}
!name = !{null, !1}
</pre>
</div>
</div>
@ -996,13 +976,11 @@ define [<a href="#linkage">linkage</a>] [<a href="#visibility">visibility</a>]
multiple parameter attributes are needed, they are space separated. For
example:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
declare i32 @printf(i8* noalias nocapture, ...)
declare i32 @atoi(i8 zeroext)
declare signext i8 @returns_signed_char()
</pre>
</div>
<p>Note that any attributes for the function result (<tt>nounwind</tt>,
<tt>readonly</tt>) come immediately after the argument list.</p>
@ -1095,11 +1073,9 @@ declare signext i8 @returns_signed_char()
<p>Each function may specify a garbage collector name, which is simply a
string:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
define void @f() gc "name" { ... }
</pre>
</div>
<p>The compiler declares the supported values of <i>name</i>. Specifying a
collector which will cause the compiler to alter its output in order to
@ -1122,14 +1098,12 @@ define void @f() gc "name" { ... }
<p>Function attributes are simple keywords that follow the type specified. If
multiple attributes are needed, they are space separated. For example:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
define void @f() noinline { ... }
define void @f() alwaysinline { ... }
define void @f() alwaysinline optsize { ... }
define void @f() optsize { ... }
</pre>
</div>
<dl>
<dt><tt><b>alignstack(&lt;<em>n</em>&gt;)</b></tt></dt>
@ -1236,12 +1210,10 @@ define void @f() optsize { ... }
concatenated by LLVM and treated as a single unit, but may be separated in
the <tt>.ll</tt> file if desired. The syntax is very simple:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
module asm "inline asm code goes here"
module asm "more can go here"
</pre>
</div>
<p>The strings can contain any character by escaping non-printable characters.
The escape sequence used is simply "\xx" where "xx" is the two digit hex code
@ -1263,11 +1235,9 @@ module asm "more can go here"
data is to be laid out in memory. The syntax for the data layout is
simply:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
target datalayout = "<i>layout specification</i>"
</pre>
</div>
<p>The <i>layout specification</i> consists of a list of specifications
separated by the minus sign character ('-'). Each specification starts with
@ -1663,8 +1633,6 @@ Classifications</a> </div>
</div>
</div>
<!-- _______________________________________________________________________ -->
<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
@ -2198,13 +2166,11 @@ Classifications</a> </div>
have <a href="#t_pointer">pointer</a> type. For example, the following is a
legal LLVM file:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
@X = global i32 17
@Y = global i32 42
@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
</pre>
</div>
</div>
@ -2223,8 +2189,7 @@ Classifications</a> </div>
surprising) transformations that are valid (in pseudo IR):</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%A = add %X, undef
%B = sub %X, undef
%C = xor %X, undef
@ -2233,13 +2198,11 @@ Safe:
%B = undef
%C = undef
</pre>
</div>
<p>This is safe because all of the output bits are affected by the undef bits.
Any output bit can have a zero or one depending on the input bits.</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%A = or %X, undef
%B = and %X, undef
Safe:
@ -2249,7 +2212,6 @@ Unsafe:
%A = undef
%B = undef
</pre>
</div>
<p>These logical operations have bits that are not always affected by the input.
For example, if "%X" has a zero bit, then the output of the 'and' operation will
@ -2260,8 +2222,7 @@ optimize the and to 0. Likewise, it is safe to assume that all the bits of
the undef operand to the or could be set, allowing the or to be folded to
-1.</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%A = select undef, %X, %Y
%B = select undef, 42, %Y
%C = select %X, %Y, undef
@ -2274,7 +2235,6 @@ Unsafe:
%B = undef
%C = undef
</pre>
</div>
<p>This set of examples show that undefined select (and conditional branch)
conditions can go "either way" but they have to come from one of the two
@ -2284,8 +2244,7 @@ the optimizer is allowed to assume that the undef operand could be the same as
%Y, allowing the whole select to be eliminated.</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%A = xor undef, undef
%B = undef
@ -2303,7 +2262,6 @@ Safe:
%E = undef
%F = undef
</pre>
</div>
<p>This example points out that two undef operands are not necessarily the same.
This can be surprising to people (and also matches C semantics) where they
@ -2316,15 +2274,13 @@ so the value is not necessarily consistent over time. In fact, %A and %C need
to have the same semantics or the core LLVM "replace all uses with" concept
would not hold.</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%A = fdiv undef, %X
%B = fdiv %X, undef
Safe:
%A = undef
b: unreachable
</pre>
</div>
<p>These examples show the crucial difference between an <em>undefined
value</em> and <em>undefined behavior</em>. An undefined value (like undef) is
@ -2339,15 +2295,13 @@ it: since the undefined operation "can't happen", the optimizer can assume that
it occurs in dead code.
</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
a: store undef -> %X
b: store %X -> undef
Safe:
a: &lt;deleted&gt;
b: unreachable
</pre>
</div>
<p>These examples reiterate the fdiv example: a store "of" an undefined value
can be assumed to not have any effect: we can assume that the value is
@ -2373,7 +2327,6 @@ has undefined behavior.</p>
<p>Trap value behavior is defined in terms of value <i>dependence</i>:</p>
<p>
<ul>
<li>Values other than <a href="#i_phi"><tt>phi</tt></a> nodes depend on
their operands.</li>
@ -2417,7 +2370,6 @@ has undefined behavior.</p>
<li>Dependence is transitive.</li>
</ul>
</p>
<p>Whenever a trap value is generated, all values which depend on it evaluate
to trap. If they have side effects, the evoke their side effects as if each
@ -2426,8 +2378,7 @@ has undefined behavior.</p>
<p>Here are some examples:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
entry:
%trap = sub nuw i32 0, 1 ; Results in a trap value.
%still_trap = and i32 %trap, 0 ; Whereas (and i32 undef, 0) would return 0.
@ -2462,7 +2413,6 @@ end:
; so this is defined (ignoring earlier
; undefined behavior in this example).
</pre>
</div>
</div>
@ -2644,31 +2594,25 @@ end:
containing the asm needs to align its stack conservatively. An example
inline assembler expression is:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
i32 (i32) asm "bswap $0", "=r,r"
</pre>
</div>
<p>Inline assembler expressions may <b>only</b> be used as the callee operand of
a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we
have:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
</pre>
</div>
<p>Inline asms with side effects not visible in the constraint list must be
marked as having side effects. This is done through the use of the
'<tt>sideeffect</tt>' keyword, like so:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
call void asm sideeffect "eieio", ""()
</pre>
</div>
<p>In some cases inline asms will contain code that will not work unless the
stack is aligned in some way, such as calls or SSE instructions on x86,
@ -2677,11 +2621,9 @@ call void asm sideeffect "eieio", ""()
contain and should generate its usual stack alignment code in the prologue
if the '<tt>alignstack</tt>' keyword is present:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
call void asm alignstack "eieio", ""()
</pre>
</div>
<p>If both keywords appear the '<tt>sideeffect</tt>' keyword must come
first.</p>
@ -2705,13 +2647,11 @@ call void asm alignstack "eieio", ""()
front-end to correlate backend errors that occur with inline asm back to the
source code that produced it. For example:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
...
!42 = !{ i32 1234567 }
</pre>
</div>
<p>It is up to the front-end to make sense of the magic numbers it places in the
IR.</p>
@ -2746,22 +2686,18 @@ call void asm sideeffect "something bad", ""()<b>, !srcloc !42</b>
example: "<tt>!foo = metadata !{!4, !3}</tt>".
<p>Metadata can be used as function arguments. Here <tt>llvm.dbg.value</tt>
function is using two metadata arguments.
function is using two metadata arguments.</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
</pre>
</div></p>
<p>Metadata can be attached with an instruction. Here metadata <tt>!21</tt> is
attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.
attached with <tt>add</tt> instruction using <tt>!dbg</tt> identifier.</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%indvar.next = add i64 %indvar, 1, !dbg !21
</pre>
</div></p>
</div>
@ -4389,8 +4325,8 @@ Instruction</a> </div>
<h5>Syntax:</h5>
<pre>
store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !<index>] <i>; yields {void}</i>
store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;][, !nontemporal !&lt;index&gt;] <i>; yields {void}</i>
</pre>
<h5>Overview:</h5>
@ -4415,7 +4351,7 @@ Instruction</a> </div>
produce less efficient code. An alignment of 1 is always safe.</p>
<p>The optional !nontemporal metadata must reference a single metatadata
name <index> corresponding to a metadata node with one i32 entry of
name &lt;index&gt; corresponding to a metadata node with one i32 entry of
value 1. The existence of the !nontemporal metatadata on the
instruction tells the optimizer and code generator that this load is
not expected to be reused in the cache. The code generator may
@ -4482,8 +4418,7 @@ Instruction</a> </div>
<p>For example, let's consider a C code fragment and how it gets compiled to
LLVM:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
struct RT {
char A;
int B[10][20];
@ -4499,12 +4434,10 @@ int *foo(struct ST *s) {
return &amp;s[1].Z.B[5][13];
}
</pre>
</div>
<p>The LLVM code generated by the GCC frontend is:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%RT = <a href="#namedtypes">type</a> { i8 , [10 x [20 x i32]], i8 }
%ST = <a href="#namedtypes">type</a> { i32, double, %RT }
@ -4514,7 +4447,6 @@ entry:
ret i32* %reg
}
</pre>
</div>
<h5>Semantics:</h5>
<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
@ -5585,8 +5517,7 @@ freestanding environments and non-C-based languages.</p>
instruction and the variable argument handling intrinsic functions are
used.</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
define i32 @test(i32 %X, ...) {
; Initialize variable argument processing
%ap = alloca i8*
@ -5611,7 +5542,6 @@ declare void @llvm.va_start(i8*)
declare void @llvm.va_copy(i8*, i8*)
declare void @llvm.va_end(i8*)
</pre>
</div>
</div>
@ -6977,14 +6907,12 @@ LLVM</a>.</p>
pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as
follows:</p>
<div class="doc_code">
<pre>
<pre class="doc_code">
%tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
%tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
%p = call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval)
%fp = bitcast i8* %p to i32 (i32, i32)*
</pre>
</div>
<p>The call <tt>%val = call i32 %fp(i32 %x, i32 %y)</tt> is then equivalent
to <tt>%val = call i32 %f(i8* %nval, i32 %x, i32 %y)</tt>.</p>