Change internal representation of ConstantFP to use APFloat.

Interface to rest of the compiler unchanged, as yet.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@41348 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dale Johannesen 2007-08-24 00:56:33 +00:00
parent 57e4785123
commit 343e770983
4 changed files with 246 additions and 38 deletions

View File

@ -118,6 +118,9 @@ namespace llvm {
static const fltSemantics IEEEdouble;
static const fltSemantics IEEEquad;
static const fltSemantics x87DoubleExtended;
/* And this psuedo, used to construct APFloats that cannot
conflict with anything real. */
static const fltSemantics Bogus;
static unsigned int semanticsPrecision(const fltSemantics &);
@ -161,6 +164,8 @@ namespace llvm {
APFloat(const fltSemantics &, const char *);
APFloat(const fltSemantics &, integerPart);
APFloat(const fltSemantics &, fltCategory, bool negative);
APFloat(double d);
APFloat(float f);
APFloat(const APFloat &);
~APFloat();
@ -179,10 +184,16 @@ namespace llvm {
opStatus convertFromInteger(const integerPart *, unsigned int, bool,
roundingMode);
opStatus convertFromString(const char *, roundingMode);
double convertToDouble() const;
float convertToFloat() const;
/* Comparison with another floating point number. */
/* IEEE comparison with another floating point number (QNaNs
compare unordered, 0==-0). */
cmpResult compare(const APFloat &) const;
/* Bitwise comparison for equality (QNaNs compare equal, 0!=-0). */
bool operator==(const APFloat &) const;
/* Simple queries. */
fltCategory getCategory() const { return category; }
const fltSemantics &getSemantics() const { return *semantics; }
@ -192,6 +203,9 @@ namespace llvm {
APFloat& operator=(const APFloat &);
/* Return an arbitrary integer value usable for hashing. */
uint32_t getHashValue() const;
private:
/* Trivial queries. */

View File

@ -23,6 +23,7 @@
#include "llvm/Constant.h"
#include "llvm/Type.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APFloat.h"
namespace llvm {
@ -213,7 +214,7 @@ private:
/// ConstantFP - Floating Point Values [float, double]
///
class ConstantFP : public Constant {
double Val;
APFloat Val;
ConstantFP(const ConstantFP &); // DO NOT IMPLEMENT
protected:
ConstantFP(const Type *Ty, double V);
@ -223,7 +224,14 @@ public:
/// isValueValidForType - return true if Ty is big enough to represent V.
static bool isValueValidForType(const Type *Ty, double V);
inline double getValue() const { return Val; }
inline double getValue() const {
if (&Val.getSemantics() == &APFloat::IEEEdouble)
return Val.convertToDouble();
else if (&Val.getSemantics() == &APFloat::IEEEsingle)
return (double)Val.convertToFloat();
else
assert(0);
}
/// isNullValue - Return true if this is the value that would be returned by
/// getNullValue. Don't depend on == for doubles to tell us it's zero, it

View File

@ -46,6 +46,7 @@ namespace llvm {
const fltSemantics APFloat::IEEEdouble = { 1023, -1022, 53, true };
const fltSemantics APFloat::IEEEquad = { 16383, -16382, 113, true };
const fltSemantics APFloat::x87DoubleExtended = { 16383, -16382, 64, false };
const fltSemantics APFloat::Bogus = { 0, 0, 0, false };
}
/* Put a bunch of private, handy routines in an anonymous namespace. */
@ -273,6 +274,31 @@ APFloat::operator=(const APFloat &rhs)
return *this;
}
bool
APFloat::operator==(const APFloat &rhs) const {
if (this == &rhs)
return true;
if (semantics != rhs.semantics ||
category != rhs.category)
return false;
if (category==fcQNaN)
return true;
else if (category==fcZero || category==fcInfinity)
return sign==rhs.sign;
else {
if (sign!=rhs.sign || exponent!=rhs.exponent)
return false;
int i= partCount();
const integerPart* p=significandParts();
const integerPart* q=rhs.significandParts();
for (; i>0; i--, p++, q++) {
if (*p != *q)
return false;
}
return true;
}
}
APFloat::APFloat(const fltSemantics &ourSemantics, integerPart value)
{
initialize(&ourSemantics);
@ -1482,7 +1508,167 @@ APFloat::convertFromString(const char *p, roundingMode rounding_mode)
return convertFromHexadecimalString(p + 2, rounding_mode);
else
{
assert(0 && "Decimal to binary conversions not yet imlemented");
assert(0 && "Decimal to binary conversions not yet implemented");
abort();
}
}
// For good performance it is desirable for different APFloats
// to produce different integers.
uint32_t
APFloat::getHashValue() const {
if (category==fcZero) return sign<<8 | semantics->precision ;
else if (category==fcInfinity) return sign<<9 | semantics->precision;
else if (category==fcQNaN) return 1<<10 | semantics->precision;
else {
uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
const integerPart* p = significandParts();
for (int i=partCount(); i>0; i--, p++)
hash ^= ((uint32_t)*p) ^ (*p)>>32;
return hash;
}
}
// Conversion from APFloat to/from host float/double. It may eventually be
// possible to eliminate these and have everybody deal with APFloats, but that
// will take a while. This approach will not easily extend to long double.
// Current implementation requires partCount()==1, which is correct at the
// moment but could be made more general.
double
APFloat::convertToDouble() const {
union {
double d;
uint64_t i;
} u;
assert(semantics == (const llvm::fltSemantics* const)&IEEEdouble);
assert (partCount()==1);
uint64_t myexponent, mysign, mysignificand;
if (category==fcNormal) {
mysign = sign;
mysignificand = *significandParts();
myexponent = exponent+1023; //bias
} else if (category==fcZero) {
mysign = sign;
myexponent = 0;
mysignificand = 0;
} else if (category==fcInfinity) {
mysign = sign;
myexponent = 0x7ff;
mysignificand = 0;
} else if (category==fcQNaN) {
mysign = 0;
myexponent = 0x7ff;
mysignificand = 0xfffffffffffffLL;
} else
assert(0);
u.i = ((mysign & 1) << 63) | ((myexponent & 0x7ff) << 52) |
(mysignificand & 0xfffffffffffffLL);
return u.d;
}
float
APFloat::convertToFloat() const {
union {
float f;
int32_t i;
} u;
assert(semantics == (const llvm::fltSemantics* const)&IEEEsingle);
assert (partCount()==1);
uint32_t mysign, myexponent, mysignificand;
if (category==fcNormal) {
mysign = sign;
myexponent = exponent+127; //bias
mysignificand = *significandParts();
} else if (category==fcZero) {
mysign = sign;
myexponent = 0;
mysignificand = 0;
} else if (category==fcInfinity) {
mysign = sign;
myexponent = 0xff;
mysignificand = 0;
} else if (category==fcQNaN) {
mysign = sign;
myexponent = 0x7ff;
mysignificand = 0x7fffff;
} else
assert(0);
u.i = ((mysign&1) << 31) | ((myexponent&0xff) << 23) |
((mysignificand & 0x7fffff));
return u.f;
}
APFloat::APFloat(double d) {
initialize(&APFloat::IEEEdouble);
union {
double d;
uint64_t i;
} u;
u.d = d;
assert(partCount()==1);
uint64_t mysign, myexponent, mysignificand;
mysign = u.i >> 63;
myexponent = (u.i >> 52) & 0x7ff;
mysignificand = u.i & 0xfffffffffffffLL;
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
sign = mysign;
} else if (myexponent==0x7ff && mysignificand==0) {
// exponent, significand meaningless
category = fcInfinity;
sign = mysign;
} else if (myexponent==0x7ff && (mysignificand & 0x8000000000000LL)) {
// sign, exponent, significand meaningless
category = fcQNaN;
} else {
sign = mysign;
category = fcNormal;
exponent = myexponent - 1023;
*significandParts() = mysignificand | 0x100000000000000LL;
}
}
APFloat::APFloat(float f) {
initialize(&APFloat::IEEEsingle);
union {
float f;
uint32_t i;
} u;
u.f = f;
assert(partCount()==1);
uint32_t mysign, myexponent, mysignificand;
mysign = u.i >> 31;
myexponent = (u.i >> 23) & 0xff;
mysignificand = u.i & 0x7fffff;
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
sign = mysign;
} else if (myexponent==0xff && mysignificand==0) {
// exponent, significand meaningless
category = fcInfinity;
sign = mysign;
} else if (myexponent==0xff && (mysignificand & 0x400000)) {
// sign, exponent, significand meaningless
category = fcQNaN;
} else {
category = fcNormal;
sign = mysign;
exponent = myexponent - 127; //bias
*significandParts() = mysignificand | 0x800000; // integer bit
}
}

View File

@ -202,7 +202,7 @@ namespace {
return DenseMapKeyInfo<void*>::getHashValue(Key.type) ^
Key.val.getHashValue();
}
static bool isPod() { return true; }
static bool isPod() { return false; }
};
}
@ -240,63 +240,63 @@ ConstantInt *ConstantInt::get(const APInt& V) {
ConstantFP::ConstantFP(const Type *Ty, double V)
: Constant(Ty, ConstantFPVal, 0, 0) {
Val = V;
: Constant(Ty, ConstantFPVal, 0, 0), Val(APFloat(V)) {
}
bool ConstantFP::isNullValue() const {
return DoubleToBits(Val) == 0;
return Val.isZero() && !Val.isNegative();
}
bool ConstantFP::isExactlyValue(double V) const {
return DoubleToBits(V) == DoubleToBits(Val);
return Val == APFloat(V);
}
namespace {
struct DenseMapInt64KeyInfo {
typedef std::pair<uint64_t, const Type*> KeyTy;
static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
struct DenseMapAPFloatKeyInfo {
struct KeyTy {
APFloat val;
KeyTy(const APFloat& V) : val(V){}
KeyTy(const KeyTy& that) : val(that.val) {}
bool operator==(const KeyTy& that) const {
return this->val == that.val;
}
bool operator!=(const KeyTy& that) const {
return !this->operator==(that);
}
};
static inline KeyTy getEmptyKey() {
return KeyTy(APFloat(APFloat::Bogus,1));
}
static bool isPod() { return true; }
};
struct DenseMapInt32KeyInfo {
typedef std::pair<uint32_t, const Type*> KeyTy;
static inline KeyTy getEmptyKey() { return KeyTy(0, 0); }
static inline KeyTy getTombstoneKey() { return KeyTy(1, 0); }
static unsigned getHashValue(const KeyTy &Key) {
return DenseMapKeyInfo<void*>::getHashValue(Key.second) ^ Key.first;
static inline KeyTy getTombstoneKey() {
return KeyTy(APFloat(APFloat::Bogus,2));
}
static bool isPod() { return true; }
static unsigned getHashValue(const KeyTy &Key) {
return Key.val.getHashValue();
}
static bool isPod() { return false; }
};
}
//---- ConstantFP::get() implementation...
//
typedef DenseMap<DenseMapInt32KeyInfo::KeyTy, ConstantFP*,
DenseMapInt32KeyInfo> FloatMapTy;
typedef DenseMap<DenseMapInt64KeyInfo::KeyTy, ConstantFP*,
DenseMapInt64KeyInfo> DoubleMapTy;
typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*,
DenseMapAPFloatKeyInfo> FPMapTy;
static ManagedStatic<FloatMapTy> FloatConstants;
static ManagedStatic<DoubleMapTy> DoubleConstants;
static ManagedStatic<FPMapTy> FPConstants;
ConstantFP *ConstantFP::get(const Type *Ty, double V) {
if (Ty == Type::FloatTy) {
uint32_t IntVal = FloatToBits((float)V);
ConstantFP *&Slot = (*FloatConstants)[std::make_pair(IntVal, Ty)];
DenseMapAPFloatKeyInfo::KeyTy Key(APFloat((float)V));
ConstantFP *&Slot = (*FPConstants)[Key];
if (Slot) return Slot;
return Slot = new ConstantFP(Ty, (float)V);
} else if (Ty == Type::DoubleTy) {
uint64_t IntVal = DoubleToBits(V);
ConstantFP *&Slot = (*DoubleConstants)[std::make_pair(IntVal, Ty)];
} else if (Ty == Type::DoubleTy) {
// Without the redundant cast, the following is taken to be
// a function declaration. What a language.
DenseMapAPFloatKeyInfo::KeyTy Key(APFloat((double)V));
ConstantFP *&Slot = (*FPConstants)[Key];
if (Slot) return Slot;
return Slot = new ConstantFP(Ty, V);
// FIXME: Make long double constants work.
} else if (Ty == Type::X86_FP80Ty ||
Ty == Type::PPC_FP128Ty || Ty == Type::FP128Ty) {
assert(0 && "Long double constants not handled yet.");