Fix unaligned reads/writes in X86JIT and RuntimeDyldELF.

Summary:
Introduce support::ulittleX_t::ref type to Support/Endian.h and use it in x86 JIT
to enforce correct endianness and fix unaligned accesses.

Test Plan: regression test suite

Reviewers: lhames

Subscribers: ributzka, llvm-commits

Differential Revision: http://reviews.llvm.org/D5011

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@216631 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Alexey Samsonov 2014-08-27 23:06:08 +00:00
parent 1f5263e43f
commit 34ea0a1de3
3 changed files with 78 additions and 49 deletions

View File

@ -96,7 +96,24 @@ struct packed_endian_specific_integral {
private:
AlignedCharArray<PickAlignment<value_type, alignment>::value,
sizeof(value_type)> Value;
public:
struct ref {
explicit ref(void *Ptr) : Ptr(Ptr) {}
operator value_type() const {
return endian::read<value_type, endian, alignment>(Ptr);
}
void operator=(value_type NewValue) {
endian::write<value_type, endian, alignment>(Ptr, NewValue);
}
private:
void *Ptr;
};
};
} // end namespace detail
typedef detail::packed_endian_specific_integral

View File

@ -23,6 +23,7 @@
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
@ -260,10 +261,9 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
llvm_unreachable("Relocation type not implemented yet!");
break;
case ELF::R_X86_64_64: {
uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
*Target = Value + Addend;
support::ulittle64_t::ref(Section.Address + Offset) = Value + Addend;
DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
<< format("%p\n", Target));
<< format("%p\n", Section.Address + Offset));
break;
}
case ELF::R_X86_64_32:
@ -273,17 +273,15 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
(Type == ELF::R_X86_64_32S &&
((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
*Target = TruncatedAddr;
support::ulittle32_t::ref(Section.Address + Offset) = TruncatedAddr;
DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
<< format("%p\n", Target));
<< format("%p\n", Section.Address + Offset));
break;
}
case ELF::R_X86_64_GOTPCREL: {
// findGOTEntry returns the 'G + GOT' part of the relocation calculation
// based on the load/target address of the GOT (not the current/local addr).
uint64_t GOTAddr = findGOTEntry(Value, SymOffset);
uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
uint64_t FinalAddress = Section.LoadAddress + Offset;
// The processRelocationRef method combines the symbol offset and the addend
// and in most cases that's what we want. For this relocation type, we need
@ -291,30 +289,29 @@ void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
int64_t RealOffset = GOTAddr + Addend - SymOffset - FinalAddress;
assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Target = TruncOffset;
support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
break;
}
case ELF::R_X86_64_PC32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
uint32_t *Placeholder =
reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
support::ulittle32_t::ref Placeholder(
(void *)(Section.ObjAddress + Offset));
uint64_t FinalAddress = Section.LoadAddress + Offset;
int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
int64_t RealOffset = Placeholder + Value + Addend - FinalAddress;
assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
*Target = TruncOffset;
support::ulittle32_t::ref(Section.Address + Offset) = TruncOffset;
break;
}
case ELF::R_X86_64_PC64: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
uint64_t *Placeholder =
reinterpret_cast<uint64_t *>(Section.ObjAddress + Offset);
uint64_t *Target = reinterpret_cast<uint64_t *>(Section.Address + Offset);
support::ulittle64_t::ref Placeholder(
(void *)(Section.ObjAddress + Offset));
uint64_t FinalAddress = Section.LoadAddress + Offset;
*Target = *Placeholder + Value + Addend - FinalAddress;
support::ulittle64_t::ref(Section.Address + Offset) =
Placeholder + Value + Addend - FinalAddress;
break;
}
}
@ -327,21 +324,20 @@ void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
case ELF::R_386_32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
uint32_t *Placeholder =
reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
*Target = *Placeholder + Value + Addend;
support::ulittle32_t::ref Placeholder(
(void *)(Section.ObjAddress + Offset));
support::ulittle32_t::ref(Section.Address + Offset) =
Placeholder + Value + Addend;
break;
}
case ELF::R_386_PC32: {
// Get the placeholder value from the generated object since
// a previous relocation attempt may have overwritten the loaded version
uint32_t *Placeholder =
reinterpret_cast<uint32_t *>(Section.ObjAddress + Offset);
uint32_t *Target = reinterpret_cast<uint32_t *>(Section.Address + Offset);
support::ulittle32_t::ref Placeholder(
(void *)(Section.ObjAddress + Offset));
uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
*Target = RealOffset;
uint32_t RealOffset = Placeholder + Value + Addend - FinalAddress;
support::ulittle32_t::ref(Section.Address + Offset) = RealOffset;
break;
}
default:

View File

@ -17,6 +17,7 @@
#include "X86TargetMachine.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Valgrind.h"
#include <cstdlib>
@ -32,13 +33,24 @@ using namespace llvm;
# define X86_32_JIT
#endif
// x86 is little-endian, and we can do unaligned memory accesses.
template<typename value_type>
static value_type read_x86(const void *memory) {
return support::endian::read<value_type, support::little, 1>(memory);
}
template<typename value_type>
static void write_x86(void *memory, value_type value) {
support::endian::write<value_type, support::little, 1>(memory, value);
}
void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) {
unsigned char *OldByte = (unsigned char *)Old;
*OldByte++ = 0xE9; // Emit JMP opcode.
unsigned *OldWord = (unsigned *)OldByte;
unsigned char *OldPtr = static_cast<unsigned char*>(Old);
write_x86<unsigned char>(OldPtr++, 0xE9); // Emit JMP opcode.
unsigned NewAddr = (intptr_t)New;
unsigned OldAddr = (intptr_t)OldWord;
*OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code.
unsigned OldAddr = (intptr_t)OldPtr;
write_x86<unsigned>(
OldPtr, NewAddr - OldAddr - 4); // Emit PC-relative addr of New code.
// X86 doesn't need to invalidate the processor cache, so just invalidate
// Valgrind's cache directly.
@ -351,31 +363,35 @@ LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr,
"Could not find return address on the stack!");
// It's a stub if there is an interrupt marker after the call.
bool isStub = ((unsigned char*)RetAddr)[0] == 0xCE;
unsigned char *RetAddrPtr = (unsigned char*)RetAddr;
bool isStub = read_x86<unsigned char>(RetAddrPtr) == 0xCE;
// The call instruction should have pushed the return value onto the stack...
#if defined (X86_64_JIT)
RetAddr--; // Backtrack to the reference itself...
RetAddrPtr--; // Backtrack to the reference itself...
#else
RetAddr -= 4; // Backtrack to the reference itself...
RetAddrPtr -= 4; // Backtrack to the reference itself...
#endif
#if 0
DEBUG(dbgs() << "In callback! Addr=" << (void*)RetAddr
DEBUG(dbgs() << "In callback! Addr=" << RetAddrPtr
<< " ESP=" << (void*)StackPtr
<< ": Resolving call to function: "
<< TheVM->getFunctionReferencedName((void*)RetAddr) << "\n");
<< TheVM->getFunctionReferencedName(RetAddrPtr) << "\n");
#endif
// Sanity check to make sure this really is a call instruction.
#if defined (X86_64_JIT)
assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!");
assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!");
assert(read_x86<unsigned char>(RetAddrPtr - 2) == 0x41 &&
"Not a call instr!");
assert(read_x86<unsigned char>(RetAddrPtr - 1) == 0xFF &&
"Not a call instr!");
#else
assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!");
assert(read_x86<unsigned char>(RetAddrPtr - 1) == 0xE8 &&
"Not a call instr!");
#endif
intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr);
intptr_t NewVal = (intptr_t)JITCompilerFunction(RetAddrPtr);
// Rewrite the call target... so that we don't end up here every time we
// execute the call.
@ -384,7 +400,7 @@ LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr,
"X86-64 doesn't support rewriting non-stub lazy compilation calls:"
" the call instruction varies too much.");
#else
*(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4);
write_x86<intptr_t>(RetAddrPtr, NewVal - (intptr_t)RetAddrPtr - 4);
#endif
if (isStub) {
@ -397,18 +413,18 @@ LLVM_LIBRARY_VISIBILITY void LLVMX86CompilationCallback2(intptr_t *StackPtr,
// PC-relative branch instead of loading the actual address. (This is
// considerably shorter than the 64-bit immediate load already there.)
// We assume here intptr_t is 64 bits.
intptr_t diff = NewVal-RetAddr+7;
intptr_t diff = NewVal - (intptr_t)RetAddrPtr + 7;
if (diff >= -2147483648LL && diff <= 2147483647LL) {
*(unsigned char*)(RetAddr-0xc) = 0xE9;
*(intptr_t *)(RetAddr-0xb) = diff & 0xffffffff;
write_x86<unsigned char>(RetAddrPtr - 0xC, 0xE9);
write_x86<intptr_t>(RetAddrPtr - 0xB, diff & 0xffffffff);
} else {
*(intptr_t *)(RetAddr - 0xa) = NewVal;
((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6));
write_x86<intptr_t>(RetAddrPtr - 0xA, NewVal);
write_x86<unsigned char>(RetAddrPtr, (2 | (4 << 3) | (3 << 6)));
}
sys::ValgrindDiscardTranslations((void*)(RetAddr-0xc), 0xd);
sys::ValgrindDiscardTranslations(RetAddrPtr - 0xC, 0xd);
#else
((unsigned char*)RetAddr)[-1] = 0xE9;
sys::ValgrindDiscardTranslations((void*)(RetAddr-1), 5);
write_x86<unsigned char>(RetAddrPtr - 1, 0xE9);
sys::ValgrindDiscardTranslations(RetAddrPtr - 1, 5);
#endif
}