[FastISel][X86] Remove no longer needed functions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213037 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Juergen Ributzka 2014-07-15 02:22:56 +00:00
parent a7d1d3a513
commit 3c0737454d

View File

@ -126,10 +126,6 @@ private:
bool X86SelectFPExt(const Instruction *I);
bool X86SelectFPTrunc(const Instruction *I);
bool X86SelectCall(const Instruction *I);
bool DoSelectCall(const Instruction *I, const char *MemIntName);
const X86InstrInfo *getInstrInfo() const {
return getTargetMachine()->getInstrInfo();
}
@ -2636,25 +2632,6 @@ bool X86FastISel::FastLowerArguments() {
return true;
}
bool X86FastISel::X86SelectCall(const Instruction *I) {
const CallInst *CI = cast<CallInst>(I);
const Value *Callee = CI->getCalledValue();
// Can't handle inline asm yet.
if (isa<InlineAsm>(Callee))
return false;
// Skip intrinsic calls - we already handled these.
if (isa<IntrinsicInst>(CI))
return false;
// Allow SelectionDAG isel to handle tail calls.
if (cast<CallInst>(I)->isTailCall())
return false;
return DoSelectCall(I, nullptr);
}
static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
CallingConv::ID CC,
ImmutableCallSite *CS) {
@ -2672,443 +2649,6 @@ static unsigned computeBytesPoppedByCallee(const X86Subtarget *Subtarget,
return 4;
}
// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
const CallInst *CI = cast<CallInst>(I);
const Value *Callee = CI->getCalledValue();
// Handle only C and fastcc calling conventions for now.
ImmutableCallSite CS(CI);
CallingConv::ID CC = CS.getCallingConv();
bool isWin64 = Subtarget->isCallingConvWin64(CC);
if (CC != CallingConv::C && CC != CallingConv::Fast &&
CC != CallingConv::X86_FastCall && CC != CallingConv::X86_64_Win64 &&
CC != CallingConv::X86_64_SysV)
return false;
// fastcc with -tailcallopt is intended to provide a guaranteed
// tail call optimization. Fastisel doesn't know how to do that.
if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
return false;
PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
FunctionType *FTy = cast<FunctionType>(PT->getElementType());
bool isVarArg = FTy->isVarArg();
// Don't know how to handle Win64 varargs yet. Nothing special needed for
// x86-32. Special handling for x86-64 is implemented.
if (isVarArg && isWin64)
return false;
// Don't know about inalloca yet.
if (CS.hasInAllocaArgument())
return false;
// Fast-isel doesn't know about callee-pop yet.
if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
TM.Options.GuaranteedTailCallOpt))
return false;
// Check whether the function can return without sret-demotion.
SmallVector<ISD::OutputArg, 4> Outs;
GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI);
bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
*FuncInfo.MF, FTy->isVarArg(),
Outs, FTy->getContext());
if (!CanLowerReturn)
return false;
// Materialize callee address in a register. FIXME: GV address can be
// handled with a CALLpcrel32 instead.
X86AddressMode CalleeAM;
if (!X86SelectCallAddress(Callee, CalleeAM))
return false;
unsigned CalleeOp = 0;
const GlobalValue *GV = nullptr;
if (CalleeAM.GV != nullptr) {
GV = CalleeAM.GV;
} else if (CalleeAM.Base.Reg != 0) {
CalleeOp = CalleeAM.Base.Reg;
} else
return false;
// Deal with call operands first.
SmallVector<const Value *, 8> ArgVals;
SmallVector<unsigned, 8> Args;
SmallVector<MVT, 8> ArgVTs;
SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
unsigned arg_size = CS.arg_size();
Args.reserve(arg_size);
ArgVals.reserve(arg_size);
ArgVTs.reserve(arg_size);
ArgFlags.reserve(arg_size);
for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
i != e; ++i) {
// If we're lowering a mem intrinsic instead of a regular call, skip the
// last two arguments, which should not passed to the underlying functions.
if (MemIntName && e-i <= 2)
break;
Value *ArgVal = *i;
ISD::ArgFlagsTy Flags;
unsigned AttrInd = i - CS.arg_begin() + 1;
if (CS.paramHasAttr(AttrInd, Attribute::SExt))
Flags.setSExt();
if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
Flags.setZExt();
if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
PointerType *Ty = cast<PointerType>(ArgVal->getType());
Type *ElementTy = Ty->getElementType();
unsigned FrameSize = DL.getTypeAllocSize(ElementTy);
unsigned FrameAlign = CS.getParamAlignment(AttrInd);
if (!FrameAlign)
FrameAlign = TLI.getByValTypeAlignment(ElementTy);
Flags.setByVal();
Flags.setByValSize(FrameSize);
Flags.setByValAlign(FrameAlign);
if (!IsMemcpySmall(FrameSize))
return false;
}
if (CS.paramHasAttr(AttrInd, Attribute::InReg))
Flags.setInReg();
if (CS.paramHasAttr(AttrInd, Attribute::Nest))
Flags.setNest();
// If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
// instruction. This is safe because it is common to all fastisel supported
// calling conventions on x86.
if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
CI->getBitWidth() == 16) {
if (Flags.isSExt())
ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
else
ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
}
}
unsigned ArgReg;
// Passing bools around ends up doing a trunc to i1 and passing it.
// Codegen this as an argument + "and 1".
if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
ArgVal->hasOneUse()) {
ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
ArgReg = getRegForValue(ArgVal);
if (ArgReg == 0) return false;
MVT ArgVT;
if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
ArgVal->hasOneUse(), 1);
} else {
ArgReg = getRegForValue(ArgVal);
}
if (ArgReg == 0) return false;
Type *ArgTy = ArgVal->getType();
MVT ArgVT;
if (!isTypeLegal(ArgTy, ArgVT))
return false;
if (ArgVT == MVT::x86mmx)
return false;
unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
Flags.setOrigAlign(OriginalAlignment);
Args.push_back(ArgReg);
ArgVals.push_back(ArgVal);
ArgVTs.push_back(ArgVT);
ArgFlags.push_back(Flags);
}
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
I->getParent()->getContext());
// Allocate shadow area for Win64
if (isWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
// Issue CALLSEQ_START
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown))
.addImm(NumBytes);
// Process argument: walk the register/memloc assignments, inserting
// copies / loads.
SmallVector<unsigned, 4> RegArgs;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
unsigned Arg = Args[VA.getValNo()];
EVT ArgVT = ArgVTs[VA.getValNo()];
// Promote the value if needed.
switch (VA.getLocInfo()) {
case CCValAssign::Full: break;
case CCValAssign::SExt: {
assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
"Unexpected extend");
bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
ArgVT = VA.getLocVT();
break;
}
case CCValAssign::ZExt: {
assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
"Unexpected extend");
bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
ArgVT = VA.getLocVT();
break;
}
case CCValAssign::AExt: {
assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
"Unexpected extend");
bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
if (!Emitted)
Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
if (!Emitted)
Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
Arg, ArgVT, Arg);
assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
ArgVT = VA.getLocVT();
break;
}
case CCValAssign::BCvt: {
unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
ISD::BITCAST, Arg, /*TODO: Kill=*/false);
assert(BC != 0 && "Failed to emit a bitcast!");
Arg = BC;
ArgVT = VA.getLocVT();
break;
}
case CCValAssign::VExt:
// VExt has not been implemented, so this should be impossible to reach
// for now. However, fallback to Selection DAG isel once implemented.
return false;
case CCValAssign::Indirect:
// FIXME: Indirect doesn't need extending, but fast-isel doesn't fully
// support this.
return false;
case CCValAssign::FPExt:
llvm_unreachable("Unexpected loc info!");
}
if (VA.isRegLoc()) {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
RegArgs.push_back(VA.getLocReg());
} else {
unsigned LocMemOffset = VA.getLocMemOffset();
X86AddressMode AM;
const X86RegisterInfo *RegInfo = static_cast<const X86RegisterInfo*>(
getTargetMachine()->getRegisterInfo());
AM.Base.Reg = RegInfo->getStackRegister();
AM.Disp = LocMemOffset;
const Value *ArgVal = ArgVals[VA.getValNo()];
ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
if (Flags.isByVal()) {
X86AddressMode SrcAM;
SrcAM.Base.Reg = Arg;
bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
assert(Res && "memcpy length already checked!"); (void)Res;
} else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
// If this is a really simple value, emit this with the Value* version
// of X86FastEmitStore. If it isn't simple, we don't want to do this,
// as it can cause us to reevaluate the argument.
if (!X86FastEmitStore(ArgVT, ArgVal, AM))
return false;
} else {
if (!X86FastEmitStore(ArgVT, Arg, /*ValIsKill=*/false, AM))
return false;
}
}
}
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
if (Subtarget->isPICStyleGOT()) {
unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base);
}
if (Subtarget->is64Bit() && isVarArg && !isWin64) {
// Count the number of XMM registers allocated.
static const MCPhysReg XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(X86::MOV8ri),
X86::AL).addImm(NumXMMRegs);
}
// Issue the call.
MachineInstrBuilder MIB;
if (CalleeOp) {
// Register-indirect call.
unsigned CallOpc;
if (Subtarget->is64Bit())
CallOpc = X86::CALL64r;
else
CallOpc = X86::CALL32r;
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc))
.addReg(CalleeOp);
} else {
// Direct call.
assert(GV && "Not a direct call");
unsigned CallOpc;
if (Subtarget->is64Bit())
CallOpc = X86::CALL64pcrel32;
else
CallOpc = X86::CALLpcrel32;
// See if we need any target-specific flags on the GV operand.
unsigned char OpFlags = 0;
// On ELF targets, in both X86-64 and X86-32 mode, direct calls to
// external symbols most go through the PLT in PIC mode. If the symbol
// has hidden or protected visibility, or if it is static or local, then
// we don't need to use the PLT - we can directly call it.
if (Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_ &&
GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
OpFlags = X86II::MO_PLT;
} else if (Subtarget->isPICStyleStubAny() &&
(GV->isDeclaration() || GV->isWeakForLinker()) &&
(!Subtarget->getTargetTriple().isMacOSX() ||
Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
// PC-relative references to external symbols should go through $stub,
// unless we're building with the leopard linker or later, which
// automatically synthesizes these stubs.
OpFlags = X86II::MO_DARWIN_STUB;
}
MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(CallOpc));
if (MemIntName)
MIB.addExternalSymbol(MemIntName, OpFlags);
else
MIB.addGlobalAddress(GV, 0, OpFlags);
}
// Add a register mask with the call-preserved registers.
// Proper defs for return values will be added by setPhysRegsDeadExcept().
MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
// Add an implicit use GOT pointer in EBX.
if (Subtarget->isPICStyleGOT())
MIB.addReg(X86::EBX, RegState::Implicit);
if (Subtarget->is64Bit() && isVarArg && !isWin64)
MIB.addReg(X86::AL, RegState::Implicit);
// Add implicit physical register uses to the call.
for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
MIB.addReg(RegArgs[i], RegState::Implicit);
// Issue CALLSEQ_END
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
unsigned NumBytesCallee = computeBytesPoppedByCallee(Subtarget, CC, &CS);
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp))
.addImm(NumBytes).addImm(NumBytesCallee);
// Build info for return calling conv lowering code.
// FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
SmallVector<ISD::InputArg, 32> Ins;
SmallVector<EVT, 4> RetTys;
ComputeValueVTs(TLI, I->getType(), RetTys);
for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
EVT VT = RetTys[i];
MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
for (unsigned j = 0; j != NumRegs; ++j) {
ISD::InputArg MyFlags;
MyFlags.VT = RegisterVT;
MyFlags.Used = !CS.getInstruction()->use_empty();
if (CS.paramHasAttr(0, Attribute::SExt))
MyFlags.Flags.setSExt();
if (CS.paramHasAttr(0, Attribute::ZExt))
MyFlags.Flags.setZExt();
if (CS.paramHasAttr(0, Attribute::InReg))
MyFlags.Flags.setInReg();
Ins.push_back(MyFlags);
}
}
// Now handle call return values.
SmallVector<unsigned, 4> UsedRegs;
SmallVector<CCValAssign, 16> RVLocs;
CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
I->getParent()->getContext());
unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
for (unsigned i = 0; i != RVLocs.size(); ++i) {
EVT CopyVT = RVLocs[i].getValVT();
unsigned CopyReg = ResultReg + i;
// If this is a call to a function that returns an fp value on the x87 fp
// stack, but where we prefer to use the value in xmm registers, copy it
// out as F80 and use a truncate to move it from fp stack reg to xmm reg.
if ((RVLocs[i].getLocReg() == X86::ST0 ||
RVLocs[i].getLocReg() == X86::ST1)) {
if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
CopyVT = MVT::f80;
CopyReg = createResultReg(&X86::RFP80RegClass);
}
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(X86::FpPOP_RETVAL), CopyReg);
} else {
BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(TargetOpcode::COPY),
CopyReg).addReg(RVLocs[i].getLocReg());
UsedRegs.push_back(RVLocs[i].getLocReg());
}
if (CopyVT != RVLocs[i].getValVT()) {
// Round the F80 the right size, which also moves to the appropriate xmm
// register. This is accomplished by storing the F80 value in memory and
// then loading it back. Ewww...
EVT ResVT = RVLocs[i].getValVT();
unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
unsigned MemSize = ResVT.getSizeInBits()/8;
int FI = MFI.CreateStackObject(MemSize, MemSize, false);
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc)), FI)
.addReg(CopyReg);
Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
TII.get(Opc), ResultReg + i), FI);
}
}
if (RVLocs.size())
UpdateValueMap(I, ResultReg, RVLocs.size());
// Set all unused physreg defs as dead.
static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
return true;
}
bool X86FastISel::FastLowerCall(CallLoweringInfo &CLI) {
auto &OutVals = CLI.OutVals;
auto &OutFlags = CLI.OutFlags;
@ -3516,8 +3056,6 @@ X86FastISel::TargetSelectInstruction(const Instruction *I) {
return X86SelectZExt(I);
case Instruction::Br:
return X86SelectBranch(I);
case Instruction::Call:
return X86SelectCall(I);
case Instruction::LShr:
case Instruction::AShr:
case Instruction::Shl: