Temporarily revert 124765 in an attempt to find the cycle breaking bootstrap.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@124778 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Eric Christopher 2011-02-03 05:40:54 +00:00
parent 254f35ca4a
commit 463a2977b1
5 changed files with 223 additions and 180 deletions

View File

@ -560,7 +560,7 @@ namespace llvm {
/// getEqClass - Classify creates equivalence classes numbered 0..N. Return
/// the equivalence class assigned the VNI.
unsigned getEqClass(const VNInfo *VNI) const { return eqClass_[VNI->id]; }
unsigned getEqClass(const VNInfo *VNI) { return eqClass_[VNI->id]; }
/// Distribute - Distribute values in LIV[0] into a separate LiveInterval
/// for each connected component. LIV must have a LiveInterval for each

View File

@ -78,7 +78,6 @@ public:
iterator begin() const { return newRegs_.begin()+firstNew_; }
iterator end() const { return newRegs_.end(); }
unsigned size() const { return newRegs_.size()-firstNew_; }
bool empty() const { return size() == 0; }
LiveInterval *get(unsigned idx) const { return newRegs_[idx+firstNew_]; }
/// create - Create a new register with the same class and stack slot as

View File

@ -645,6 +645,9 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
LiveRangeEdit LREdit(VirtReg, NewVRegs, SpillRegs);
SplitEditor SE(*SA, *LIS, *VRM, *DomTree, LREdit);
// Ranges to add to the register interval after all defs are in place.
SmallVector<IndexPair, 8> UseRanges;
// Create the main cross-block interval.
SE.openIntv();
@ -681,7 +684,7 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
if (!BI.LiveThrough) {
DEBUG(dbgs() << ", not live-through.\n");
SE.enterIntvBefore(BI.Def);
SE.useIntv(BI.Def, Stop);
UseRanges.push_back(IndexPair(BI.Def, Stop));
continue;
}
if (!RegIn) {
@ -689,7 +692,7 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
// Reload just before the first use.
DEBUG(dbgs() << ", not live-in, enter before first use.\n");
SE.enterIntvBefore(BI.FirstUse);
SE.useIntv(BI.FirstUse, Stop);
UseRanges.push_back(IndexPair(BI.FirstUse, Stop));
continue;
}
DEBUG(dbgs() << ", live-through.\n");
@ -714,7 +717,7 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
DEBUG(dbgs() << ", free use at " << Use << ".\n");
assert(Use <= BI.LastUse && "Couldn't find last use");
SE.enterIntvBefore(Use);
SE.useIntv(Use, Stop);
UseRanges.push_back(IndexPair(Use, Stop));
continue;
}
@ -723,6 +726,12 @@ void RAGreedy::splitAroundRegion(LiveInterval &VirtReg, unsigned PhysReg,
SE.enterIntvAtEnd(*BI.MBB);
}
// Add the live-out ranges following the defs.
// We must wait until all defs have been inserted, otherwise SplitKit gets
// confused about the value mapping.
for (unsigned i = 0, e = UseRanges.size(); i != e; ++i)
SE.useIntv(UseRanges[i].first, UseRanges[i].second);
// Now all defs leading to live bundles are handled, do everything else.
for (unsigned i = 0, e = LiveBlocks.size(); i != e; ++i) {
BlockInfo &BI = LiveBlocks[i];

View File

@ -449,6 +449,7 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
// VNInfo. Insert phi-def VNInfos along the path back to IdxMBB.
DEBUG(dbgs() << "\n Reaching defs for BB#" << IdxMBB->getNumber()
<< " at " << Idx << " in " << *LI << '\n');
DEBUG(dumpCache());
// Blocks where LI should be live-in.
SmallVector<MachineDomTreeNode*, 16> LiveIn;
@ -586,6 +587,7 @@ VNInfo *LiveIntervalMap::mapValue(const VNInfo *ParentVNI, SlotIndex Idx,
assert(IdxVNI && "Didn't find value for Idx");
#ifndef NDEBUG
DEBUG(dumpCache());
// Check the LiveOutCache invariants.
for (LiveOutMap::iterator I = LiveOutCache.begin(), E = LiveOutCache.end();
I != E; ++I) {
@ -727,86 +729,69 @@ SplitEditor::SplitEditor(SplitAnalysis &sa,
LiveRangeEdit &edit)
: sa_(sa), LIS(lis), VRM(vrm),
MRI(vrm.getMachineFunction().getRegInfo()),
MDT(mdt),
TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
Edit(edit),
OpenIdx(0),
RegAssign(Allocator)
DupLI(LIS, mdt, edit.getParent()),
OpenLI(LIS, mdt, edit.getParent())
{
// We don't need an AliasAnalysis since we will only be performing
// cheap-as-a-copy remats anyway.
Edit.anyRematerializable(LIS, TII, 0);
}
void SplitEditor::dump() const {
if (RegAssign.empty()) {
dbgs() << " empty\n";
return;
}
for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
dbgs() << '\n';
bool SplitEditor::intervalsLiveAt(SlotIndex Idx) const {
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
if (*I != DupLI.getLI() && (*I)->liveAt(Idx))
return true;
return false;
}
VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
VNInfo *SplitEditor::defFromParent(LiveIntervalMap &Reg,
VNInfo *ParentVNI,
SlotIndex UseIdx,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
VNInfo *VNI = 0;
MachineInstr *CopyMI = 0;
SlotIndex Def;
LiveInterval *LI = Edit.get(RegIdx);
// Attempt cheap-as-a-copy rematerialization.
LiveRangeEdit::Remat RM(ParentVNI);
if (Edit.canRematerializeAt(RM, UseIdx, true, LIS)) {
Def = Edit.rematerializeAt(MBB, I, LI->reg, RM, LIS, TII, TRI);
Def = Edit.rematerializeAt(MBB, I, Reg.getLI()->reg, RM,
LIS, TII, TRI);
} else {
// Can't remat, just insert a copy from parent.
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
.addReg(Edit.getReg());
CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY),
Reg.getLI()->reg).addReg(Edit.getReg());
Def = LIS.InsertMachineInstrInMaps(CopyMI).getDefIndex();
}
// Define the value in Reg.
VNInfo *VNI = LIMappers[RegIdx].defValue(ParentVNI, Def);
VNI = Reg.defValue(ParentVNI, Def);
VNI->setCopy(CopyMI);
// Add minimal liveness for the new value.
Edit.get(RegIdx)->addRange(LiveRange(Def, Def.getNextSlot(), VNI));
if (RegIdx) {
if (UseIdx < Def)
UseIdx = Def;
RegAssign.insert(Def, UseIdx.getNextSlot(), RegIdx);
}
if (UseIdx < Def)
UseIdx = Def;
Reg.getLI()->addRange(LiveRange(Def, UseIdx.getNextSlot(), VNI));
return VNI;
}
/// Create a new virtual register and live interval.
void SplitEditor::openIntv() {
assert(!OpenIdx && "Previous LI not closed before openIntv");
assert(!OpenLI.getLI() && "Previous LI not closed before openIntv");
if (!DupLI.getLI())
DupLI.reset(&Edit.create(MRI, LIS, VRM));
// Create the complement as index 0.
if (Edit.empty()) {
Edit.create(MRI, LIS, VRM);
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
LIMappers.back().reset(Edit.get(0));
}
// Create the open interval.
OpenIdx = Edit.size();
Edit.create(MRI, LIS, VRM);
LIMappers.push_back(LiveIntervalMap(LIS, MDT, Edit.getParent()));
LIMappers[OpenIdx].reset(Edit.get(OpenIdx));
OpenLI.reset(&Edit.create(MRI, LIS, VRM));
}
/// enterIntvBefore - Enter OpenLI before the instruction at Idx. If CurLI is
/// not live before Idx, a COPY is not inserted.
void SplitEditor::enterIntvBefore(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before enterIntvBefore");
assert(OpenLI.getLI() && "openIntv not called before enterIntvBefore");
Idx = Idx.getUseIndex();
DEBUG(dbgs() << " enterIntvBefore " << Idx);
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
@ -815,16 +800,18 @@ void SplitEditor::enterIntvBefore(SlotIndex Idx) {
return;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id);
truncatedValues.insert(ParentVNI);
MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
assert(MI && "enterIntvBefore called with invalid index");
defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
DEBUG(dump());
defFromParent(OpenLI, ParentVNI, Idx, *MI->getParent(), MI);
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
}
/// enterIntvAtEnd - Enter OpenLI at the end of MBB.
void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
assert(OpenLI.getLI() && "openIntv not called before enterIntvAtEnd");
SlotIndex End = LIS.getMBBEndIdx(&MBB).getPrevSlot();
DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << End);
VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(End);
@ -833,8 +820,9 @@ void SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
return;
}
DEBUG(dbgs() << ": valno " << ParentVNI->id);
defFromParent(OpenIdx, ParentVNI, End, MBB, MBB.getFirstTerminator());
DEBUG(dump());
truncatedValues.insert(ParentVNI);
defFromParent(OpenLI, ParentVNI, End, MBB, MBB.getFirstTerminator());
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
}
/// useIntv - indicate that all instructions in MBB should use OpenLI.
@ -843,15 +831,15 @@ void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
}
void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
assert(OpenIdx && "openIntv not called before useIntv");
DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
RegAssign.insert(Start, End, OpenIdx);
DEBUG(dump());
assert(OpenLI.getLI() && "openIntv not called before useIntv");
OpenLI.addRange(Start, End);
DEBUG(dbgs() << " use [" << Start << ';' << End << "): "
<< *OpenLI.getLI() << '\n');
}
/// leaveIntvAfter - Leave OpenLI after the instruction at Idx.
void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
assert(OpenIdx && "openIntv not called before leaveIntvAfter");
assert(OpenLI.getLI() && "openIntv not called before leaveIntvAfter");
DEBUG(dbgs() << " leaveIntvAfter " << Idx);
// The interval must be live beyond the instruction at Idx.
@ -864,17 +852,20 @@ void SplitEditor::leaveIntvAfter(SlotIndex Idx) {
DEBUG(dbgs() << ": valno " << ParentVNI->id);
MachineBasicBlock::iterator MII = LIS.getInstructionFromIndex(Idx);
VNInfo *VNI = defFromParent(0, ParentVNI, Idx,
VNInfo *VNI = defFromParent(DupLI, ParentVNI, Idx,
*MII->getParent(), llvm::next(MII));
RegAssign.insert(Idx, VNI->def, OpenIdx);
DEBUG(dump());
// Make sure that OpenLI is properly extended from Idx to the new copy.
// FIXME: This shouldn't be necessary for remats.
OpenLI.addSimpleRange(Idx, VNI->def, ParentVNI);
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
}
/// leaveIntvAtTop - Leave the interval at the top of MBB.
/// Currently, only one value can leave the interval.
void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
assert(OpenLI.getLI() && "openIntv not called before leaveIntvAtTop");
SlotIndex Start = LIS.getMBBStartIdx(&MBB);
DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
@ -884,130 +875,179 @@ void SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
return;
}
VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
VNInfo *VNI = defFromParent(DupLI, ParentVNI, Start, MBB,
MBB.SkipPHIsAndLabels(MBB.begin()));
RegAssign.insert(Start, VNI->def, OpenIdx);
DEBUG(dump());
// Finally we must make sure that OpenLI is properly extended from Start to
// the new copy.
OpenLI.addSimpleRange(Start, VNI->def, ParentVNI);
DEBUG(dbgs() << ": " << *OpenLI.getLI() << '\n');
}
/// closeIntv - Indicate that we are done editing the currently open
/// LiveInterval, and ranges can be trimmed.
void SplitEditor::closeIntv() {
assert(OpenIdx && "openIntv not called before closeIntv");
OpenIdx = 0;
assert(OpenLI.getLI() && "openIntv not called before closeIntv");
DEBUG(dbgs() << " closeIntv " << *OpenLI.getLI() << '\n');
OpenLI.reset(0);
}
/// rewriteAssigned - Rewrite all uses of Edit.getReg().
void SplitEditor::rewriteAssigned() {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit.getReg()),
/// rewrite - Rewrite all uses of reg to use the new registers.
void SplitEditor::rewrite(unsigned reg) {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(reg),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
unsigned OpNum = RI.getOperandNo();
MachineInstr *MI = MO.getParent();
++RI;
// LiveDebugVariables should have handled all DBG_VALUE instructions.
if (MI->isDebugValue()) {
DEBUG(dbgs() << "Zapping " << *MI);
// FIXME: We can do much better with debug values.
MO.setReg(0);
continue;
}
SlotIndex Idx = LIS.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
// Rewrite to the mapped register at Idx.
unsigned RegIdx = RegAssign.lookup(Idx);
MO.setReg(Edit.get(RegIdx)->reg);
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':' << RegIdx << '\t' << *MI);
// Extend liveness to Idx.
const VNInfo *ParentVNI = Edit.getParent().getVNInfoAt(Idx);
LIMappers[RegIdx].mapValue(ParentVNI, Idx);
LiveInterval *LI = 0;
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E;
++I) {
LiveInterval *testli = *I;
if (testli->liveAt(Idx)) {
LI = testli;
break;
}
}
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'<< Idx);
assert(LI && "No register was live at use");
MO.setReg(LI->reg);
if (MO.isUse() && !MI->isRegTiedToDefOperand(OpNum))
MO.setIsKill(LI->killedAt(Idx.getDefIndex()));
DEBUG(dbgs() << '\t' << *MI);
}
}
/// rewriteSplit - Rewrite uses of Intvs[0] according to the ConEQ mapping.
void SplitEditor::rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
const ConnectedVNInfoEqClasses &ConEq) {
for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Intvs[0]->reg),
RE = MRI.reg_end(); RI != RE;) {
MachineOperand &MO = RI.getOperand();
MachineInstr *MI = MO.getParent();
++RI;
if (MO.isUse() && MO.isUndef())
void
SplitEditor::addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
// Build vector of iterator pairs from the intervals.
typedef std::pair<LiveInterval::const_iterator,
LiveInterval::const_iterator> IIPair;
SmallVector<IIPair, 8> Iters;
for (LiveRangeEdit::iterator LI = Edit.begin(), LE = Edit.end(); LI != LE;
++LI) {
if (*LI == DupLI.getLI())
continue;
// DBG_VALUE instructions should have been eliminated earlier.
SlotIndex Idx = LIS.getInstructionIndex(MI);
Idx = MO.isUse() ? Idx.getUseIndex() : Idx.getDefIndex();
DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
<< Idx << ':');
const VNInfo *VNI = Intvs[0]->getVNInfoAt(Idx);
assert(VNI && "Interval not live at use.");
MO.setReg(Intvs[ConEq.getEqClass(VNI)]->reg);
DEBUG(dbgs() << VNI->id << '\t' << *MI);
LiveInterval::const_iterator I = (*LI)->find(Start);
LiveInterval::const_iterator E = (*LI)->end();
if (I != E)
Iters.push_back(std::make_pair(I, E));
}
SlotIndex sidx = Start;
// Break [Start;End) into segments that don't overlap any intervals.
for (;;) {
SlotIndex next = sidx, eidx = End;
// Find overlapping intervals.
for (unsigned i = 0; i != Iters.size() && sidx < eidx; ++i) {
LiveInterval::const_iterator I = Iters[i].first;
// Interval I is overlapping [sidx;eidx). Trim sidx.
if (I->start <= sidx) {
sidx = I->end;
// Move to the next run, remove iters when all are consumed.
I = ++Iters[i].first;
if (I == Iters[i].second) {
Iters.erase(Iters.begin() + i);
--i;
continue;
}
}
// Trim eidx too if needed.
if (I->start >= eidx)
continue;
eidx = I->start;
next = I->end;
}
// Now, [sidx;eidx) doesn't overlap anything in intervals_.
if (sidx < eidx)
DupLI.addSimpleRange(sidx, eidx, VNI);
// If the interval end was truncated, we can try again from next.
if (next <= sidx)
break;
sidx = next;
}
}
void SplitEditor::finish() {
assert(OpenIdx == 0 && "Previous LI not closed before rewrite");
void SplitEditor::computeRemainder() {
// First we need to fill in the live ranges in dupli.
// If values were redefined, we need a full recoloring with SSA update.
// If values were truncated, we only need to truncate the ranges.
// If values were partially rematted, we should shrink to uses.
// If values were fully rematted, they should be omitted.
// FIXME: If a single value is redefined, just move the def and truncate.
LiveInterval &parent = Edit.getParent();
// At this point, the live intervals in Edit contain VNInfos corresponding to
// the inserted copies.
DEBUG(dbgs() << "computeRemainder from " << parent << '\n');
// Add the original defs from the parent interval.
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
E = Edit.getParent().vni_end(); I != E; ++I) {
const VNInfo *ParentVNI = *I;
LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(ParentVNI->def)];
VNInfo *VNI = LIM.defValue(ParentVNI, ParentVNI->def);
LIM.getLI()->addRange(LiveRange(ParentVNI->def,
ParentVNI->def.getNextSlot(), VNI));
// Mark all values as complex to force liveness computation.
// This should really only be necessary for remat victims, but we are lazy.
LIM.markComplexMapped(ParentVNI);
// Values that are fully contained in the split intervals.
SmallPtrSet<const VNInfo*, 8> deadValues;
// Map all CurLI values that should have live defs in dupli.
for (LiveInterval::const_vni_iterator I = parent.vni_begin(),
E = parent.vni_end(); I != E; ++I) {
const VNInfo *VNI = *I;
// Don't transfer unused values to the new intervals.
if (VNI->isUnused())
continue;
// Original def is contained in the split intervals.
if (intervalsLiveAt(VNI->def)) {
// Did this value escape?
if (DupLI.isMapped(VNI))
truncatedValues.insert(VNI);
else
deadValues.insert(VNI);
continue;
}
// Add minimal live range at the definition.
VNInfo *DVNI = DupLI.defValue(VNI, VNI->def);
DupLI.getLI()->addRange(LiveRange(VNI->def, VNI->def.getNextSlot(), DVNI));
}
#ifndef NDEBUG
// Every new interval must have a def by now, otherwise the split is bogus.
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
assert((*I)->hasAtLeastOneValue() && "Split interval has no value");
#endif
// FIXME: Don't recompute the liveness of all values, infer it from the
// overlaps between the parent live interval and RegAssign.
// The mapValue algorithm is only necessary when:
// - The parent value maps to multiple defs, and new phis are needed, or
// - The value has been rematerialized before some uses, and we want to
// minimize the live range so it only reaches the remaining uses.
// All other values have simple liveness that can be computed from RegAssign
// and the parent live interval.
// Extend live ranges to be live-out for successor PHI values.
for (LiveInterval::const_vni_iterator I = Edit.getParent().vni_begin(),
E = Edit.getParent().vni_end(); I != E; ++I) {
const VNInfo *PHIVNI = *I;
if (!PHIVNI->isPHIDef())
continue;
LiveIntervalMap &LIM = LIMappers[RegAssign.lookup(PHIVNI->def)];
MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
PE = MBB->pred_end(); PI != PE; ++PI) {
SlotIndex End = LIS.getMBBEndIdx(*PI).getPrevSlot();
// The predecessor may not have a live-out value. That is OK, like an
// undef PHI operand.
if (VNInfo *VNI = Edit.getParent().getVNInfoAt(End))
LIM.mapValue(VNI, End);
// Add all ranges to dupli.
for (LiveInterval::const_iterator I = parent.begin(), E = parent.end();
I != E; ++I) {
const LiveRange &LR = *I;
if (truncatedValues.count(LR.valno)) {
// recolor after removing intervals_.
addTruncSimpleRange(LR.start, LR.end, LR.valno);
} else if (!deadValues.count(LR.valno)) {
// recolor without truncation.
DupLI.addSimpleRange(LR.start, LR.end, LR.valno);
}
}
// Rewrite instructions.
rewriteAssigned();
// Extend DupLI to be live out of any critical loop predecessors.
// This means we have multiple registers live out of those blocks.
// The alternative would be to split the critical edges.
if (criticalPreds_.empty())
return;
for (SplitAnalysis::BlockPtrSet::iterator I = criticalPreds_.begin(),
E = criticalPreds_.end(); I != E; ++I)
DupLI.extendTo(*I, LIS.getMBBEndIdx(*I).getPrevSlot());
criticalPreds_.clear();
}
// FIXME: Delete defs that were rematted everywhere.
void SplitEditor::finish() {
assert(!OpenLI.getLI() && "Previous LI not closed before rewrite");
assert(DupLI.getLI() && "No dupli for rewrite. Noop spilt?");
// Complete dupli liveness.
computeRemainder();
// Get rid of unused values and set phi-kill flags.
for (LiveRangeEdit::iterator I = Edit.begin(), E = Edit.end(); I != E; ++I)
(*I)->RenumberValues(LIS);
// Rewrite instructions.
rewrite(Edit.getReg());
// Now check if any registers were separated into multiple components.
ConnectedVNInfoEqClasses ConEQ(LIS);
for (unsigned i = 0, e = Edit.size(); i != e; ++i) {
@ -1021,8 +1061,9 @@ void SplitEditor::finish() {
dups.push_back(li);
for (unsigned i = 1; i != NumComp; ++i)
dups.push_back(&Edit.create(MRI, LIS, VRM));
rewriteComponents(dups, ConEQ);
ConEQ.Distribute(&dups[0]);
// Rewrite uses to the new regs.
rewrite(li->reg);
}
// Calculate spill weight and allocation hints for new intervals.
@ -1054,6 +1095,9 @@ void SplitEditor::splitAroundLoop(const MachineLoop *Loop) {
sa_.getCriticalExits(Blocks, CriticalExits);
assert(CriticalExits.empty() && "Cannot break critical exits yet");
// Get critical predecessors so computeRemainder can deal with them.
sa_.getCriticalPreds(Blocks, criticalPreds_);
// Create new live interval for the loop.
openIntv();

View File

@ -13,13 +13,11 @@
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/SlotIndexes.h"
namespace llvm {
class ConnectedVNInfoEqClasses;
class LiveInterval;
class LiveIntervals;
class LiveRangeEdit;
@ -265,10 +263,6 @@ public:
/// with defValue.
bool isComplexMapped(const VNInfo *ParentVNI) const;
/// markComplexMapped - Mark ParentVNI as complex mapped regardless of the
/// number of definitions.
void markComplexMapped(const VNInfo *ParentVNI) { Values[ParentVNI] = 0; }
// addSimpleRange - Add a simple range from ParentLI to LI.
// ParentVNI must be live in the [Start;End) interval.
void addSimpleRange(SlotIndex Start, SlotIndex End, const VNInfo *ParentVNI);
@ -296,49 +290,49 @@ class SplitEditor {
LiveIntervals &LIS;
VirtRegMap &VRM;
MachineRegisterInfo &MRI;
MachineDominatorTree &MDT;
const TargetInstrInfo &TII;
const TargetRegisterInfo &TRI;
/// Edit - The current parent register and new intervals created.
LiveRangeEdit &Edit;
/// Index into Edit of the currently open interval.
/// The index 0 is used for the complement, so the first interval started by
/// openIntv will be 1.
unsigned OpenIdx;
/// DupLI - Created as a copy of CurLI, ranges are carved out as new
/// intervals get added through openIntv / closeIntv. This is used to avoid
/// editing CurLI.
LiveIntervalMap DupLI;
typedef IntervalMap<SlotIndex, unsigned> RegAssignMap;
/// Allocator for the interval map. This will eventually be shared with
/// SlotIndexes and LiveIntervals.
RegAssignMap::Allocator Allocator;
/// RegAssign - Map of the assigned register indexes.
/// Edit.get(RegAssign.lookup(Idx)) is the register that should be live at
/// Idx.
RegAssignMap RegAssign;
/// LIMappers - One LiveIntervalMap or each interval in Edit.
SmallVector<LiveIntervalMap, 4> LIMappers;
/// Currently open LiveInterval.
LiveIntervalMap OpenLI;
/// defFromParent - Define Reg from ParentVNI at UseIdx using either
/// rematerialization or a COPY from parent. Return the new value.
VNInfo *defFromParent(unsigned RegIdx,
VNInfo *defFromParent(LiveIntervalMap &Reg,
VNInfo *ParentVNI,
SlotIndex UseIdx,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I);
/// rewriteAssigned - Rewrite all uses of Edit.getReg() to assigned registers.
void rewriteAssigned();
/// intervalsLiveAt - Return true if any member of intervals_ is live at Idx.
bool intervalsLiveAt(SlotIndex Idx) const;
/// rewriteComponents - Rewrite all uses of Intv[0] according to the eq
/// classes in ConEQ.
/// This must be done when Intvs[0] is styill live at all uses, before calling
/// ConEq.Distribute().
void rewriteComponents(const SmallVectorImpl<LiveInterval*> &Intvs,
const ConnectedVNInfoEqClasses &ConEq);
/// Values in CurLI whose live range has been truncated when entering an open
/// li.
SmallPtrSet<const VNInfo*, 8> truncatedValues;
/// addTruncSimpleRange - Add the given simple range to DupLI after
/// truncating any overlap with intervals_.
void addTruncSimpleRange(SlotIndex Start, SlotIndex End, VNInfo *VNI);
/// criticalPreds_ - Set of basic blocks where both dupli and OpenLI should be
/// live out because of a critical edge.
SplitAnalysis::BlockPtrSet criticalPreds_;
/// computeRemainder - Compute the dupli liveness as the complement of all the
/// new intervals.
void computeRemainder();
/// rewrite - Rewrite all uses of reg to use the new registers.
void rewrite(unsigned reg);
public:
/// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
@ -380,9 +374,6 @@ public:
/// remaining live range, and rewrite instructions to use the new registers.
void finish();
/// dump - print the current interval maping to dbgs().
void dump() const;
// ===--- High level methods ---===
/// splitAroundLoop - Split CurLI into a separate live interval inside