Various cleanups:

- Remove tabs
- Standardize use of space around ( and ).
- Consolidate the ConstantPlaceHolder class
- Rename two methods to be more meaningful (ParseType, ParseTypes)
- Correct indentation of blocks
- Add documentation
- Convert input dependent asserts to error(...) so it throws instead.
Provide placeholder implementations of read_float and read_double that
still read in platform-specific endianess. When I figure out how to do
this without knowing the endianess of the platform, it will get implemented
correctly.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14765 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Reid Spencer 2004-07-11 17:28:43 +00:00
parent 66906518ed
commit 46b002cd9b

View File

@ -29,24 +29,22 @@
using namespace llvm;
namespace {
/// @brief A class for maintaining the slot number definition
/// as a placeholder for the actual definition.
template<class SuperType>
class PlaceholderDef : public SuperType {
/// as a placeholder for the actual definition for forward constants defs.
class ConstantPlaceHolder : public ConstantExpr {
unsigned ID;
PlaceholderDef(); // DO NOT IMPLEMENT
void operator=(const PlaceholderDef &); // DO NOT IMPLEMENT
ConstantPlaceHolder(); // DO NOT IMPLEMENT
void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
public:
PlaceholderDef(const Type *Ty, unsigned id) : SuperType(Ty), ID(id) {}
ConstantPlaceHolder(const Type *Ty, unsigned id)
: ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty),
ID(id) {}
unsigned getID() { return ID; }
};
struct ConstantPlaceHolderHelper : public ConstantExpr {
ConstantPlaceHolderHelper(const Type *Ty)
: ConstantExpr(Instruction::UserOp1, Constant::getNullValue(Ty), Ty) {}
};
typedef PlaceholderDef<ConstantPlaceHolderHelper> ConstPHolder;
}
// Provide some details on error
inline void BytecodeReader::error(std::string err) {
@ -69,7 +67,7 @@ inline bool BytecodeReader::moreInBlock() {
/// Throw an error if we've read past the end of the current block
inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
if ( At > BlockEnd )
if (At > BlockEnd)
error(std::string("Attempt to read past the end of ") + block_name + " block.");
}
@ -77,8 +75,8 @@ inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
inline void BytecodeReader::align32() {
BufPtr Save = At;
At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
if ( At > Save )
if (Handler) Handler->handleAlignment( At - Save );
if (At > Save)
if (Handler) Handler->handleAlignment(At - Save);
if (At > BlockEnd)
error("Ran out of data while aligning!");
}
@ -156,15 +154,31 @@ inline void BytecodeReader::read_data(void *Ptr, void *End) {
At += Amount;
}
/// Read a float value in little-endian order
inline void BytecodeReader::read_float(float& FloatVal) {
/// FIXME: This is a broken implementation! It reads
/// it in a platform-specific endianess. Need to make
/// it little endian always.
read_data(&FloatVal, &FloatVal+1);
}
/// Read a double value in little-endian order
inline void BytecodeReader::read_double(double& DoubleVal) {
/// FIXME: This is a broken implementation! It reads
/// it in a platform-specific endianess. Need to make
/// it little endian always.
read_data(&DoubleVal, &DoubleVal+1);
}
/// Read a block header and obtain its type and size
inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
Type = read_uint();
Size = read_uint();
BlockStart = At;
if ( At + Size > BlockEnd )
if (At + Size > BlockEnd)
error("Attempt to size a block past end of memory");
BlockEnd = At + Size;
if (Handler) Handler->handleBlock( Type, BlockStart, Size );
if (Handler) Handler->handleBlock(Type, BlockStart, Size);
}
@ -185,12 +199,12 @@ inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
/// function returns true, otherwise false. This helps detect situations
/// where the pre 1.3 bytecode is indicating that what follows is a type.
/// @returns true iff type id corresponds to pre 1.3 "type type"
inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId ) {
if ( hasTypeDerivedFromValue ) { /// do nothing if 1.3 or later
if ( TypeId == Type::LabelTyID ) {
inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
if (TypeId == Type::LabelTyID) {
TypeId = Type::VoidTyID; // sanitize it
return true; // indicate we got TypeTyID in pre 1.3 bytecode
} else if ( TypeId > Type::LabelTyID )
} else if (TypeId > Type::LabelTyID)
--TypeId; // shift all planes down because type type plane is missing
}
return false;
@ -210,7 +224,7 @@ inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
//===----------------------------------------------------------------------===//
/// Determine if a type id has an implicit null value
inline bool BytecodeReader::hasImplicitNull(unsigned TyID ) {
inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
if (!hasExplicitPrimitiveZeros)
return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
return TyID >= Type::FirstDerivedTyID;
@ -233,23 +247,23 @@ const Type *BytecodeReader::getType(unsigned ID) {
}
// Is it a module-level type?
if (ID < ModuleTypes.size())
return ModuleTypes[ID].get();
if (ID < ModuleTypes.size())
return ModuleTypes[ID].get();
// Nope, is it a function-level type?
ID -= ModuleTypes.size();
if (ID < FunctionTypes.size())
return FunctionTypes[ID].get();
// Nope, is it a function-level type?
ID -= ModuleTypes.size();
if (ID < FunctionTypes.size())
return FunctionTypes[ID].get();
error("Illegal type reference!");
return Type::VoidTy;
error("Illegal type reference!");
return Type::VoidTy;
}
/// Get a sanitized type id. This just makes sure that the \p ID
/// is both sanitized and not the "type type" of pre-1.3 bytecode.
/// @see sanitizeTypeId
inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
if ( sanitizeTypeId(ID) )
if (sanitizeTypeId(ID))
error("Invalid type id encountered");
return getType(ID);
}
@ -259,8 +273,8 @@ inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
/// then calls getType to return the type value.
inline const Type* BytecodeReader::readSanitizedType() {
unsigned ID;
if ( read_typeid(ID) )
error( "Invalid type id encountered");
if (read_typeid(ID))
error("Invalid type id encountered");
return getType(ID);
}
@ -272,20 +286,20 @@ unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
// Scan the compaction table for the type if needed.
if (!CompactionTypes.empty()) {
std::vector<const Type*>::const_iterator I =
find(CompactionTypes.begin(), CompactionTypes.end(), Ty);
std::vector<const Type*>::const_iterator I =
find(CompactionTypes.begin(), CompactionTypes.end(), Ty);
if (I == CompactionTypes.end())
error("Couldn't find type specified in compaction table!");
return Type::FirstDerivedTyID + (&*I - &CompactionTypes[0]);
if (I == CompactionTypes.end())
error("Couldn't find type specified in compaction table!");
return Type::FirstDerivedTyID + (&*I - &CompactionTypes[0]);
}
// Check the function level types first...
TypeListTy::iterator I = find(FunctionTypes.begin(), FunctionTypes.end(), Ty);
if (I != FunctionTypes.end())
return Type::FirstDerivedTyID + ModuleTypes.size() +
(&*I - &FunctionTypes[0]);
return Type::FirstDerivedTyID + ModuleTypes.size() +
(&*I - &FunctionTypes[0]);
// Check the module level types now...
I = find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
@ -300,7 +314,7 @@ unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
if (Slot < Type::FirstDerivedTyID) {
const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
if ( ! Ty )
if (!Ty)
error("Not a primitive type ID?");
return Ty;
}
@ -395,9 +409,9 @@ Value* BytecodeReader::getGlobalTableValue(const Type *Ty, unsigned SlotNo) {
SlotNo >= ModuleValues[TyID]->size()) {
error("Corrupt compaction table entry!"
+ utostr(TyID) + ", " + utostr(SlotNo) + ": "
+ utostr(ModuleValues.size()) + ", "
+ utostr(ModuleValues.size()) + ", "
+ utohexstr(int((void*)ModuleValues[TyID])) + ", "
+ utostr(ModuleValues[TyID]->size()) );
+ utostr(ModuleValues[TyID]->size()));
}
return ModuleValues[TyID]->getOperand(SlotNo);
}
@ -427,7 +441,7 @@ Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
} else {
// Create a placeholder for the constant reference and
// keep track of the fact that we have a forward ref to recycle it
Constant *C = new ConstPHolder(Ty, Slot);
Constant *C = new ConstantPlaceHolder(Ty, Slot);
// Keep track of the fact that we have a forward ref to recycle it
ConstantFwdRefs.insert(I, std::make_pair(Key, C));
@ -442,8 +456,8 @@ Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
/// As values are created, they are inserted into the appropriate place
/// with this method. The ValueTable argument must be one of ModuleValues
/// or FunctionValues data members of this class.
unsigned BytecodeReader::insertValue(
Value *Val, unsigned type, ValueTable &ValueTab) {
unsigned BytecodeReader::insertValue(Value *Val, unsigned type,
ValueTable &ValueTab) {
assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
!hasImplicitNull(type) &&
"Cannot read null values from bytecode!");
@ -460,7 +474,7 @@ unsigned BytecodeReader::insertValue(
}
/// Insert the arguments of a function as new values in the reader.
void BytecodeReader::insertArguments(Function* F ) {
void BytecodeReader::insertArguments(Function* F) {
const FunctionType *FT = F->getFunctionType();
Function::aiterator AI = F->abegin();
for (FunctionType::param_iterator It = FT->param_begin();
@ -476,7 +490,7 @@ void BytecodeReader::insertArguments(Function* F ) {
/// inserted at the end of the \p BB provided. The arguments of
/// the instruction are provided in the \p Args vector.
void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
BasicBlock* BB) {
BasicBlock* BB) {
BufPtr SaveAt = At;
// Clear instruction data
@ -549,7 +563,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
const Type *InstTy = getSanitizedType(iType);
// Hae enough to inform the handler now
// We have enough info to inform the handler now.
if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
// Declare the resulting instruction we'll build.
@ -569,15 +583,15 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
break;
case Instruction::VAArg:
Result = new VAArgInst(getValue(iType, Oprnds[0]),
getSanitizedType(Oprnds[1]));
getSanitizedType(Oprnds[1]));
break;
case Instruction::VANext:
Result = new VANextInst(getValue(iType, Oprnds[0]),
getSanitizedType(Oprnds[1]));
getSanitizedType(Oprnds[1]));
break;
case Instruction::Cast:
Result = new CastInst(getValue(iType, Oprnds[0]),
getSanitizedType(Oprnds[1]));
getSanitizedType(Oprnds[1]));
break;
case Instruction::Select:
Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
@ -765,7 +779,7 @@ void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
if (!TopTy)
error("Invalid getelementptr instruction!");
error("Invalid getelementptr instruction!");
unsigned ValIdx = Oprnds[i];
unsigned IdxTy = 0;
@ -862,8 +876,8 @@ BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
/// This method reads in one of the basicblock packets. This method is not used
/// for bytecode files after LLVM 1.0
/// @returns The basic block constructed.
BasicBlock *BytecodeReader::ParseBasicBlock( unsigned BlockNo) {
if (Handler) Handler->handleBasicBlockBegin( BlockNo );
BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
if (Handler) Handler->handleBasicBlockBegin(BlockNo);
BasicBlock *BB = 0;
@ -875,10 +889,10 @@ BasicBlock *BytecodeReader::ParseBasicBlock( unsigned BlockNo) {
BB = ParsedBasicBlocks[BlockNo];
std::vector<unsigned> Operands;
while ( moreInBlock() )
while (moreInBlock())
ParseInstruction(Operands, BB);
if (Handler) Handler->handleBasicBlockEnd( BlockNo );
if (Handler) Handler->handleBasicBlockEnd(BlockNo);
return BB;
}
@ -890,8 +904,8 @@ unsigned BytecodeReader::ParseInstructionList(Function* F) {
unsigned BlockNo = 0;
std::vector<unsigned> Args;
while ( moreInBlock() ) {
if (Handler) Handler->handleBasicBlockBegin( BlockNo );
while (moreInBlock()) {
if (Handler) Handler->handleBasicBlockBegin(BlockNo);
BasicBlock *BB;
if (ParsedBasicBlocks.size() == BlockNo)
ParsedBasicBlocks.push_back(BB = new BasicBlock());
@ -903,13 +917,13 @@ unsigned BytecodeReader::ParseInstructionList(Function* F) {
F->getBasicBlockList().push_back(BB);
// Read instructions into this basic block until we get to a terminator
while ( moreInBlock() && !BB->getTerminator())
while (moreInBlock() && !BB->getTerminator())
ParseInstruction(Args, BB);
if (!BB->getTerminator())
error("Non-terminated basic block found!");
if (Handler) Handler->handleBasicBlockEnd( BlockNo-1 );
if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
}
return BlockNo;
@ -934,10 +948,10 @@ void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
/// In LLVM 1.3 we write types separately from values so
/// The types are always first in the symbol table. This is
/// because Type no longer derives from Value.
if ( ! hasTypeDerivedFromValue ) {
if (!hasTypeDerivedFromValue) {
// Symtab block header: [num entries]
unsigned NumEntries = read_vbr_uint();
for ( unsigned i = 0; i < NumEntries; ++i ) {
for (unsigned i = 0; i < NumEntries; ++i) {
// Symtab entry: [def slot #][name]
unsigned slot = read_vbr_uint();
std::string Name = read_str();
@ -946,7 +960,7 @@ void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
}
}
while ( moreInBlock() ) {
while (moreInBlock()) {
// Symtab block header: [num entries][type id number]
unsigned NumEntries = read_vbr_uint();
unsigned Typ = 0;
@ -960,23 +974,23 @@ void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
// if we're reading a pre 1.3 bytecode file and the type plane
// is the "type type", handle it here
if ( isTypeType ) {
const Type* T = getType(slot);
if ( T == 0 )
error("Failed type look-up for name '" + Name + "'");
ST->insert(Name, T);
continue; // code below must be short circuited
if (isTypeType) {
const Type* T = getType(slot);
if (T == 0)
error("Failed type look-up for name '" + Name + "'");
ST->insert(Name, T);
continue; // code below must be short circuited
} else {
Value *V = 0;
if (Typ == Type::LabelTyID) {
if (slot < BBMap.size())
V = BBMap[slot];
} else {
V = getValue(Typ, slot, false); // Find mapping...
}
if (V == 0)
error("Failed value look-up for name '" + Name + "'");
V->setName(Name, ST);
Value *V = 0;
if (Typ == Type::LabelTyID) {
if (slot < BBMap.size())
V = BBMap[slot];
} else {
V = getValue(Typ, slot, false); // Find mapping...
}
if (V == 0)
error("Failed value look-up for name '" + Name + "'");
V->setName(Name, ST);
}
}
}
@ -985,40 +999,52 @@ void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
}
/// Read in the types portion of a compaction table.
void BytecodeReader::ParseCompactionTypes( unsigned NumEntries ) {
void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned TypeSlot = 0;
if ( read_typeid(TypeSlot) )
if (read_typeid(TypeSlot))
error("Invalid type in compaction table: type type");
const Type *Typ = getGlobalTableType(TypeSlot);
CompactionTypes.push_back(Typ);
if (Handler) Handler->handleCompactionTableType( i, TypeSlot, Typ );
if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
}
}
/// Parse a compaction table.
void BytecodeReader::ParseCompactionTable() {
// Notify handler that we're beginning a compaction table.
if (Handler) Handler->handleCompactionTableBegin();
/// In LLVM 1.3 Type no longer derives from Value. So,
/// we always write them first in the compaction table
/// because they can't occupy a "type plane" where the
/// Values reside.
if ( ! hasTypeDerivedFromValue ) {
// In LLVM 1.3 Type no longer derives from Value. So,
// we always write them first in the compaction table
// because they can't occupy a "type plane" where the
// Values reside.
if (! hasTypeDerivedFromValue) {
unsigned NumEntries = read_vbr_uint();
ParseCompactionTypes( NumEntries );
ParseCompactionTypes(NumEntries);
}
while ( moreInBlock() ) {
// Compaction tables live in separate blocks so we have to loop
// until we've read the whole thing.
while (moreInBlock()) {
// Read the number of Value* entries in the compaction table
unsigned NumEntries = read_vbr_uint();
unsigned Ty = 0;
unsigned isTypeType = false;
// Decode the type from value read in. Most compaction table
// planes will have one or two entries in them. If that's the
// case then the length is encoded in the bottom two bits and
// the higher bits encode the type. This saves another VBR value.
if ((NumEntries & 3) == 3) {
// In this case, both low-order bits are set (value 3). This
// is a signal that the typeid follows.
NumEntries >>= 2;
isTypeType = read_typeid(Ty);
} else {
// In this case, the low-order bits specify the number of entries
// and the high order bits specify the type.
Ty = NumEntries >> 2;
isTypeType = sanitizeTypeId(Ty);
NumEntries &= 3;
@ -1026,35 +1052,47 @@ void BytecodeReader::ParseCompactionTable() {
// if we're reading a pre 1.3 bytecode file and the type plane
// is the "type type", handle it here
if ( isTypeType ) {
if (isTypeType) {
ParseCompactionTypes(NumEntries);
} else {
// Make sure we have enough room for the plane
if (Ty >= CompactionValues.size())
CompactionValues.resize(Ty+1);
CompactionValues.resize(Ty+1);
// Make sure the plane is empty or we have some kind of error
if (!CompactionValues[Ty].empty())
error("Compaction table plane contains multiple entries!");
error("Compaction table plane contains multiple entries!");
if (Handler) Handler->handleCompactionTablePlane( Ty, NumEntries );
// Notify handler about the plane
if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
// Convert the type slot to a type
const Type *Typ = getType(Ty);
// Push the implicit zero
CompactionValues[Ty].push_back(Constant::getNullValue(Typ));
// Read in each of the entries, put them in the compaction table
// and notify the handler that we have a new compaction table value.
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned ValSlot = read_vbr_uint();
Value *V = getGlobalTableValue(Typ, ValSlot);
CompactionValues[Ty].push_back(V);
if (Handler) Handler->handleCompactionTableValue( i, Ty, ValSlot, Typ );
unsigned ValSlot = read_vbr_uint();
Value *V = getGlobalTableValue(Typ, ValSlot);
CompactionValues[Ty].push_back(V);
if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot, Typ);
}
}
}
// Notify handler that the compaction table is done.
if (Handler) Handler->handleCompactionTableEnd();
}
// Parse a single type constant.
const Type *BytecodeReader::ParseTypeConstant() {
// Parse a single type. The typeid is read in first. If its a primitive type
// then nothing else needs to be read, we know how to instantiate it. If its
// a derived type, then additional data is read to fill out the type
// definition.
const Type *BytecodeReader::ParseType() {
unsigned PrimType = 0;
if ( read_typeid(PrimType) )
if (read_typeid(PrimType))
error("Invalid type (type type) in type constants!");
const Type *Result = 0;
@ -1086,13 +1124,13 @@ const Type *BytecodeReader::ParseTypeConstant() {
case Type::StructTyID: {
std::vector<const Type*> Elements;
unsigned Typ = 0;
if ( read_typeid(Typ) )
if (read_typeid(Typ))
error("Invalid element type (type type) for structure!");
while (Typ) { // List is terminated by void/0 typeid
Elements.push_back(getType(Typ));
if ( read_typeid(Typ) )
error("Invalid element type (type type) for structure!");
if (read_typeid(Typ))
error("Invalid element type (type type) for structure!");
}
Result = StructType::get(Elements);
@ -1112,11 +1150,11 @@ const Type *BytecodeReader::ParseTypeConstant() {
error("Don't know how to deserialize primitive type " + utostr(PrimType));
break;
}
if (Handler) Handler->handleType( Result );
if (Handler) Handler->handleType(Result);
return Result;
}
// ParseTypeConstants - We have to use this weird code to handle recursive
// ParseType - We have to use this weird code to handle recursive
// types. We know that recursive types will only reference the current slab of
// values in the type plane, but they can forward reference types before they
// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
@ -1126,7 +1164,7 @@ const Type *BytecodeReader::ParseTypeConstant() {
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void BytecodeReader::ParseTypeConstants(TypeListTy &Tab, unsigned NumEntries){
void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
assert(Tab.size() == 0 && "should not have read type constants in before!");
// Insert a bunch of opaque types to be resolved later...
@ -1138,7 +1176,7 @@ void BytecodeReader::ParseTypeConstants(TypeListTy &Tab, unsigned NumEntries){
// opaque types just inserted.
//
for (unsigned i = 0; i != NumEntries; ++i) {
const Type* NewTy = ParseTypeConstant();
const Type* NewTy = ParseType();
const Type* OldTy = Tab[i].get();
if (NewTy == 0)
error("Couldn't parse type!");
@ -1159,7 +1197,7 @@ void BytecodeReader::ParseTypeConstants(TypeListTy &Tab, unsigned NumEntries){
}
/// Parse a single constant value
Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
// We must check for a ConstantExpr before switching by type because
// a ConstantExpr can be of any type, and has no explicit value.
//
@ -1176,8 +1214,8 @@ Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
for (unsigned i = 0; i != isExprNumArgs; ++i) {
unsigned ArgValSlot = read_vbr_uint();
unsigned ArgTypeSlot = 0;
if ( read_typeid(ArgTypeSlot) )
error("Invalid argument type (type type) for constant value");
if (read_typeid(ArgTypeSlot))
error("Invalid argument type (type type) for constant value");
// Get the arg value from its slot if it exists, otherwise a placeholder
ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
@ -1185,7 +1223,9 @@ Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
// Construct a ConstantExpr of the appropriate kind
if (isExprNumArgs == 1) { // All one-operand expressions
assert(Opcode == Instruction::Cast);
if (Opcode != Instruction::Cast)
error("Only Cast instruction has one argument for ConstantExpr");
Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
return Result;
@ -1209,7 +1249,8 @@ Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
return Result;
} else if (Opcode == Instruction::Select) {
assert(ArgVec.size() == 3);
if (ArgVec.size() != 3)
error("Select instruction must have three arguments.");
Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1],
ArgVec[2]);
if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
@ -1263,16 +1304,16 @@ Constant *BytecodeReader::ParseConstantValue( unsigned TypeID) {
}
case Type::FloatTyID: {
float F;
read_data(&F, &F+1);
Constant* Result = ConstantFP::get(Ty, F);
float Val;
read_float(Val);
Constant* Result = ConstantFP::get(Ty, Val);
if (Handler) Handler->handleConstantValue(Result);
return Result;
}
case Type::DoubleTyID: {
double Val;
read_data(&Val, &Val+1);
read_double(Val);
Constant* Result = ConstantFP::get(Ty, Val);
if (Handler) Handler->handleConstantValue(Result);
return Result;
@ -1352,7 +1393,7 @@ void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Slot){
void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
for (; NumEntries; --NumEntries) {
unsigned Typ = 0;
if ( read_typeid(Typ) )
if (read_typeid(Typ))
error("Invalid type (type type) for string constant");
const Type *Ty = getType(Typ);
if (!isa<ArrayType>(Ty))
@ -1386,18 +1427,18 @@ void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
/// Parse the constant pool.
void BytecodeReader::ParseConstantPool(ValueTable &Tab,
TypeListTy &TypeTab,
bool isFunction) {
bool isFunction) {
if (Handler) Handler->handleGlobalConstantsBegin();
/// In LLVM 1.3 Type does not derive from Value so the types
/// do not occupy a plane. Consequently, we read the types
/// first in the constant pool.
if ( isFunction && !hasTypeDerivedFromValue ) {
if (isFunction && !hasTypeDerivedFromValue) {
unsigned NumEntries = read_vbr_uint();
ParseTypeConstants(TypeTab, NumEntries);
ParseTypes(TypeTab, NumEntries);
}
while ( moreInBlock() ) {
while (moreInBlock()) {
unsigned NumEntries = read_vbr_uint();
unsigned Typ = 0;
bool isTypeType = read_typeid(Typ);
@ -1405,8 +1446,8 @@ void BytecodeReader::ParseConstantPool(ValueTable &Tab,
/// In LLVM 1.2 and before, Types were written to the
/// bytecode file in the "Type Type" plane (#12).
/// In 1.3 plane 12 is now the label plane. Handle this here.
if ( isTypeType ) {
ParseTypeConstants(TypeTab, NumEntries);
if (isTypeType) {
ParseTypes(TypeTab, NumEntries);
} else if (Typ == Type::VoidTyID) {
/// Use of Type::VoidTyID is a misnomer. It actually means
/// that the following plane is constant strings
@ -1435,7 +1476,7 @@ void BytecodeReader::ParseConstantPool(ValueTable &Tab,
/// Parse the contents of a function. Note that this function can be
/// called lazily by materializeFunction
/// @see materializeFunction
void BytecodeReader::ParseFunctionBody(Function* F ) {
void BytecodeReader::ParseFunctionBody(Function* F) {
unsigned FuncSize = BlockEnd - At;
GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
@ -1453,7 +1494,7 @@ void BytecodeReader::ParseFunctionBody(Function* F ) {
break;
}
F->setLinkage( Linkage );
F->setLinkage(Linkage);
if (Handler) Handler->handleFunctionBegin(F,FuncSize);
// Keep track of how many basic blocks we have read in...
@ -1461,7 +1502,7 @@ void BytecodeReader::ParseFunctionBody(Function* F ) {
bool InsertedArguments = false;
BufPtr MyEnd = BlockEnd;
while ( At < MyEnd ) {
while (At < MyEnd) {
unsigned Type, Size;
BufPtr OldAt = At;
read_block(Type, Size);
@ -1609,7 +1650,7 @@ void BytecodeReader::ParseFunction(Function* Func) {
LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
// Make sure we found it
if ( Fi == LazyFunctionLoadMap.end() ) {
if (Fi == LazyFunctionLoadMap.end()) {
error("Unrecognized function of type " + Func->getType()->getDescription());
return;
}
@ -1620,7 +1661,7 @@ void BytecodeReader::ParseFunction(Function* Func) {
LazyFunctionLoadMap.erase(Fi);
this->ParseFunctionBody( Func );
this->ParseFunctionBody(Func);
}
/// The ParseAllFunctionBodies method parses through all the previously
@ -1634,7 +1675,7 @@ void BytecodeReader::ParseAllFunctionBodies() {
LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
while ( Fi != Fe ) {
while (Fi != Fe) {
Function* Func = Fi->first;
BlockStart = At = Fi->second.Buf;
BlockEnd = Fi->second.EndBuf;
@ -1652,7 +1693,7 @@ void BytecodeReader::ParseGlobalTypes() {
if (hasTypeDerivedFromValue)
read_vbr_uint();
ParseTypeConstants(ModuleTypes, NumEntries);
ParseTypes(ModuleTypes, NumEntries);
}
/// Parse the Global info (types, global vars, constants)
@ -1666,7 +1707,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
// VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
// Linkage, bit4+ = slot#
unsigned SlotNo = VarType >> 5;
if ( sanitizeTypeId(SlotNo) )
if (sanitizeTypeId(SlotNo))
error("Invalid type (type type) for global var!");
unsigned LinkageID = (VarType >> 2) & 7;
bool isConstant = VarType & 1;
@ -1686,11 +1727,11 @@ void BytecodeReader::ParseModuleGlobalInfo() {
}
const Type *Ty = getType(SlotNo);
if ( !Ty ) {
if (!Ty) {
error("Global has no type! SlotNo=" + utostr(SlotNo));
}
if ( !isa<PointerType>(Ty)) {
if (!isa<PointerType>(Ty)) {
error("Global not a pointer type! Ty= " + Ty->getDescription());
}
@ -1708,7 +1749,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
}
// Notify handler about the global value.
if (Handler) Handler->handleGlobalVariable( ElTy, isConstant, Linkage, SlotNo, initSlot );
if (Handler) Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo, initSlot);
// Get next item
VarType = read_vbr_uint();
@ -1716,7 +1757,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
// Read the function objects for all of the functions that are coming
unsigned FnSignature = 0;
if ( read_typeid(FnSignature) )
if (read_typeid(FnSignature))
error("Invalid function type (type type) found");
while (FnSignature != Type::VoidTyID) { // List is terminated by Void
@ -1724,7 +1765,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
if (!isa<PointerType>(Ty) ||
!isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
error("Function not a pointer to function type! Ty = " +
Ty->getDescription());
Ty->getDescription());
// FIXME: what should Ty be if handler continues?
}
@ -1743,7 +1784,7 @@ void BytecodeReader::ParseModuleGlobalInfo() {
if (Handler) Handler->handleFunctionDeclaration(Func);
// Get Next function signature
if ( read_typeid(FnSignature) )
if (read_typeid(FnSignature))
error("Invalid function type (type type) found");
}
@ -1819,7 +1860,7 @@ void BytecodeReader::ParseVersionInfo() {
if (hasNoEndianness) Endianness = Module::AnyEndianness;
if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize );
if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
}
/// Parse a whole module.
@ -1842,7 +1883,7 @@ void BytecodeReader::ParseModule() {
switch (Type) {
case BytecodeFormat::GlobalTypePlane:
if ( SeenGlobalTypePlane )
if (SeenGlobalTypePlane)
error("Two GlobalTypePlane Blocks Encountered!");
ParseGlobalTypes();
@ -1850,7 +1891,7 @@ void BytecodeReader::ParseModule() {
break;
case BytecodeFormat::ModuleGlobalInfo:
if ( SeenModuleGlobalInfo )
if (SeenModuleGlobalInfo)
error("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo();
SeenModuleGlobalInfo = true;
@ -1871,7 +1912,7 @@ void BytecodeReader::ParseModule() {
default:
At += Size;
if (OldAt > At) {
error("Unexpected Block of Type #" + utostr(Type) + " encountered!" );
error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
}
break;
}
@ -1908,10 +1949,9 @@ void BytecodeReader::ParseModule() {
/// This function completely parses a bytecode buffer given by the \p Buf
/// and \p Length parameters.
void BytecodeReader::ParseBytecode(
BufPtr Buf, unsigned Length,
const std::string &ModuleID,
bool processFunctions) {
void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length,
const std::string &ModuleID,
bool processFunctions) {
try {
At = MemStart = BlockStart = Buf;
@ -1935,24 +1975,24 @@ void BytecodeReader::ParseBytecode(
// Get the module block and size and verify
unsigned Type, Size;
read_block(Type, Size);
if ( Type != BytecodeFormat::Module ) {
if (Type != BytecodeFormat::Module) {
error("Expected Module Block! Type:" + utostr(Type) + ", Size:"
+ utostr(Size));
+ utostr(Size));
}
if ( At + Size != MemEnd ) {
if (At + Size != MemEnd) {
error("Invalid Top Level Block Length! Type:" + utostr(Type)
+ ", Size:" + utostr(Size));
+ ", Size:" + utostr(Size));
}
// Parse the module contents
this->ParseModule();
// Check for missing functions
if ( hasFunctions() )
if (hasFunctions())
error("Function expected, but bytecode stream ended!");
// Process all the function bodies now, if requested
if ( processFunctions )
if (processFunctions)
ParseAllFunctionBodies();
// Tell the handler we're done with the module
@ -1962,7 +2002,7 @@ void BytecodeReader::ParseBytecode(
// Tell the handler we're finished the parse
if (Handler) Handler->handleFinish();
} catch (std::string& errstr ) {
} catch (std::string& errstr) {
if (Handler) Handler->handleError(errstr);
freeState();
delete TheModule;