Suppress -Wshorten-64-to-32 warnings for 64-bit hosts.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@50590 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Evan Cheng 2008-05-02 21:15:08 +00:00
parent e818f770bb
commit 48e8c80e17
3 changed files with 52 additions and 46 deletions

View File

@ -31,7 +31,8 @@ namespace llvm {
typedef uint64_t integerPart;
const unsigned int host_char_bit = 8;
const unsigned int integerPartWidth = host_char_bit * sizeof(integerPart);
const unsigned int integerPartWidth = host_char_bit *
static_cast<unsigned int>(sizeof(integerPart));
//===----------------------------------------------------------------------===//
// APInt Class
@ -76,8 +77,10 @@ class APInt {
/// This enum is used to hold the constants we needed for APInt.
enum {
APINT_BITS_PER_WORD = sizeof(uint64_t) * 8, ///< Bits in a word
APINT_WORD_SIZE = sizeof(uint64_t) ///< Byte size of a word
/// Bits in a word
APINT_BITS_PER_WORD = static_cast<unsigned int>(sizeof(uint64_t)) * 8,
/// Byte size of a word
APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
};
/// This constructor is used only internally for speed of construction of

View File

@ -163,9 +163,9 @@ namespace {
static int
totalExponent(const char *p, int exponentAdjustment)
{
integerPart unsignedExponent;
int unsignedExponent;
bool negative, overflow;
long exponent;
int exponent;
/* Move past the exponent letter and sign to the digits. */
p++;
@ -280,9 +280,10 @@ namespace {
while (*p == '.');
/* Adjust the exponents for any decimal point. */
D->exponent += (dot - p) - (dot > p);
D->normalizedExponent = (D->exponent + (p - D->firstSigDigit)
- (dot > D->firstSigDigit && dot < p));
D->exponent += static_cast<exponent_t>((dot - p) - (dot > p));
D->normalizedExponent = (D->exponent +
static_cast<exponent_t>((p - D->firstSigDigit)
- (dot > D->firstSigDigit && dot < p)));
}
D->lastSigDigit = p;
@ -2002,7 +2003,7 @@ APFloat::convertFromHexadecimalString(const char *p,
firstSignificantDigit = p;
for(;;) {
integerPart hex_value;
unsigned int hex_value;
if(*p == '.') {
assert(dot == 0);
@ -2043,7 +2044,7 @@ APFloat::convertFromHexadecimalString(const char *p,
/* Calculate the exponent adjustment implicit in the number of
significant digits. */
expAdjustment = dot - firstSignificantDigit;
expAdjustment = static_cast<int>(dot - firstSignificantDigit);
if(expAdjustment < 0)
expAdjustment++;
expAdjustment = expAdjustment * 4 - 1;
@ -2097,7 +2098,8 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
decSig.exponent += exp;
lostFraction calcLostFraction;
integerPart HUerr, HUdistance, powHUerr;
integerPart HUerr, HUdistance;
unsigned int powHUerr;
if (exp >= 0) {
/* multiplySignificand leaves the precision-th bit set to 1. */
@ -2113,7 +2115,7 @@ APFloat::roundSignificandWithExponent(const integerPart *decSigParts,
excessPrecision = calcSemantics.precision;
}
/* Extra half-ulp lost in reciprocal of exponent. */
powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0: 2;
powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
}
/* Both multiplySignificand and divideSignificand return the
@ -2190,7 +2192,7 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
N-digit decimal integer is N * 196 / 59. Allocate enough space
to hold the full significand, and an extra part required by
tcMultiplyPart. */
partCount = (D.lastSigDigit - D.firstSigDigit) + 1;
partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
partCount = partCountForBits(1 + 196 * partCount / 59);
decSignificand = new integerPart[partCount + 1];
partCount = 0;
@ -2320,7 +2322,7 @@ APFloat::convertToHexString(char *dst, unsigned int hexDigits,
*dst = 0;
return dst - p;
return static_cast<unsigned int>(dst - p);
}
/* Does the hard work of outputting the correctly rounded hexadecimal
@ -2443,7 +2445,7 @@ APFloat::getHashValue() const
uint32_t hash = sign<<11 | semantics->precision | exponent<<12;
const integerPart* p = significandParts();
for (int i=partCount(); i>0; i--, p++)
hash ^= ((uint32_t)*p) ^ (*p)>>32;
hash ^= ((uint32_t)*p) ^ (uint32_t)((*p)>>32);
return hash;
}
}
@ -2483,8 +2485,8 @@ APFloat::convertF80LongDoubleAPFloatToAPInt() const
}
uint64_t words[2];
words[0] = (((uint64_t)sign & 1) << 63) |
((myexponent & 0x7fff) << 48) |
words[0] = ((uint64_t)(sign & 1) << 63) |
((myexponent & 0x7fffLL) << 48) |
((mysignificand >>16) & 0xffffffffffffLL);
words[1] = mysignificand & 0xffff;
return APInt(80, 2, words);
@ -2526,10 +2528,10 @@ APFloat::convertPPCDoubleDoubleAPFloatToAPInt() const
}
uint64_t words[2];
words[0] = (((uint64_t)sign & 1) << 63) |
words[0] = ((uint64_t)(sign & 1) << 63) |
((myexponent & 0x7ff) << 52) |
(mysignificand & 0xfffffffffffffLL);
words[1] = (((uint64_t)sign2 & 1) << 63) |
words[1] = ((uint64_t)(sign2 & 1) << 63) |
((myexponent2 & 0x7ff) << 52) |
(mysignificand2 & 0xfffffffffffffLL);
return APInt(128, 2, words);
@ -2560,7 +2562,7 @@ APFloat::convertDoubleAPFloatToAPInt() const
mysignificand = *significandParts();
}
return APInt(64, (((((uint64_t)sign & 1) << 63) |
return APInt(64, ((((uint64_t)(sign & 1) << 63) |
((myexponent & 0x7ff) << 52) |
(mysignificand & 0xfffffffffffffLL))));
}
@ -2575,7 +2577,7 @@ APFloat::convertFloatAPFloatToAPInt() const
if (category==fcNormal) {
myexponent = exponent+127; //bias
mysignificand = *significandParts();
mysignificand = (uint32_t)*significandParts();
if (myexponent == 1 && !(mysignificand & 0x800000))
myexponent = 0; // denormal
} else if (category==fcZero) {
@ -2587,7 +2589,7 @@ APFloat::convertFloatAPFloatToAPInt() const
} else {
assert(category == fcNaN && "Unknown category!");
myexponent = 0xff;
mysignificand = *significandParts();
mysignificand = (uint32_t)*significandParts();
}
return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
@ -2649,7 +2651,7 @@ APFloat::initFromF80LongDoubleAPInt(const APInt &api)
initialize(&APFloat::x87DoubleExtended);
assert(partCount()==2);
sign = i1>>63;
sign = static_cast<unsigned int>(i1>>63);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;
@ -2685,8 +2687,8 @@ APFloat::initFromPPCDoubleDoubleAPInt(const APInt &api)
initialize(&APFloat::PPCDoubleDouble);
assert(partCount()==2);
sign = i1>>63;
sign2 = i2>>63;
sign = static_cast<unsigned int>(i1>>63);
sign2 = static_cast<unsigned int>(i2>>63);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
// exponent2 and significand2 are required to be 0; we don't check
@ -2732,7 +2734,7 @@ APFloat::initFromDoubleAPInt(const APInt &api)
initialize(&APFloat::IEEEdouble);
assert(partCount()==1);
sign = i>>63;
sign = static_cast<unsigned int>(i>>63);
if (myexponent==0 && mysignificand==0) {
// exponent, significand meaningless
category = fcZero;

View File

@ -99,7 +99,7 @@ APInt::APInt(uint32_t numbits, const std::string& Val, uint8_t radix)
assert(BitWidth >= MIN_INT_BITS && "bitwidth too small");
assert(BitWidth <= MAX_INT_BITS && "bitwidth too large");
assert(!Val.empty() && "String empty?");
fromString(numbits, Val.c_str(), Val.size(), radix);
fromString(numbits, Val.c_str(), (uint32_t)Val.size(), radix);
}
APInt::APInt(const APInt& that)
@ -905,7 +905,7 @@ APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, uint32_t width) {
// Otherwise, we have to shift the mantissa bits up to the right location
APInt Tmp(width, mantissa);
Tmp = Tmp.shl(exp - 52);
Tmp = Tmp.shl((uint32_t)exp - 52);
return isNeg ? -Tmp : Tmp;
}
@ -1086,7 +1086,7 @@ APInt &APInt::sextOrTrunc(uint32_t width) {
/// Arithmetic right-shift this APInt by shiftAmt.
/// @brief Arithmetic right-shift function.
APInt APInt::ashr(const APInt &shiftAmt) const {
return ashr(shiftAmt.getLimitedValue(BitWidth));
return ashr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
}
/// Arithmetic right-shift this APInt by shiftAmt.
@ -1175,7 +1175,7 @@ APInt APInt::ashr(uint32_t shiftAmt) const {
/// Logical right-shift this APInt by shiftAmt.
/// @brief Logical right-shift function.
APInt APInt::lshr(const APInt &shiftAmt) const {
return lshr(shiftAmt.getLimitedValue(BitWidth));
return lshr((uint32_t)shiftAmt.getLimitedValue(BitWidth));
}
/// Logical right-shift this APInt by shiftAmt.
@ -1244,7 +1244,7 @@ APInt APInt::lshr(uint32_t shiftAmt) const {
/// @brief Left-shift function.
APInt APInt::shl(const APInt &shiftAmt) const {
// It's undefined behavior in C to shift by BitWidth or greater, but
return shl(shiftAmt.getLimitedValue(BitWidth));
return shl((uint32_t)shiftAmt.getLimitedValue(BitWidth));
}
/// Left-shift this APInt by shiftAmt.
@ -1307,7 +1307,7 @@ APInt APInt::shl(uint32_t shiftAmt) const {
}
APInt APInt::rotl(const APInt &rotateAmt) const {
return rotl(rotateAmt.getLimitedValue(BitWidth));
return rotl((uint32_t)rotateAmt.getLimitedValue(BitWidth));
}
APInt APInt::rotl(uint32_t rotateAmt) const {
@ -1322,7 +1322,7 @@ APInt APInt::rotl(uint32_t rotateAmt) const {
}
APInt APInt::rotr(const APInt &rotateAmt) const {
return rotr(rotateAmt.getLimitedValue(BitWidth));
return rotr((uint32_t)rotateAmt.getLimitedValue(BitWidth));
}
APInt APInt::rotr(uint32_t rotateAmt) const {
@ -1517,8 +1517,8 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
uint64_t result = u_tmp - subtrahend;
uint32_t k = j + i;
u[k++] = result & (b-1); // subtract low word
u[k++] = result >> 32; // subtract high word
u[k++] = (uint32_t)(result & (b-1)); // subtract low word
u[k++] = (uint32_t)(result >> 32); // subtract high word
while (borrow && k <= m+n) { // deal with borrow to the left
borrow = u[k] == 0;
u[k]--;
@ -1549,7 +1549,7 @@ static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
// D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
// negative, go to step D6; otherwise go on to step D7.
q[j] = qp;
q[j] = (uint32_t)qp;
if (isNeg) {
// D6. [Add back]. The probability that this step is necessary is very
// small, on the order of only 2/b. Make sure that test data accounts for
@ -1645,8 +1645,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
memset(U, 0, (m+n+1)*sizeof(uint32_t));
for (unsigned i = 0; i < lhsWords; ++i) {
uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
U[i * 2] = tmp & mask;
U[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
U[i * 2] = (uint32_t)(tmp & mask);
U[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
}
U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
@ -1654,8 +1654,8 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
memset(V, 0, (n)*sizeof(uint32_t));
for (unsigned i = 0; i < rhsWords; ++i) {
uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
V[i * 2] = tmp & mask;
V[i * 2 + 1] = tmp >> (sizeof(uint32_t)*8);
V[i * 2] = (uint32_t)(tmp & mask);
V[i * 2 + 1] = (uint32_t)(tmp >> (sizeof(uint32_t)*8));
}
// initialize the quotient and remainder
@ -1691,13 +1691,13 @@ void APInt::divide(const APInt LHS, uint32_t lhsWords,
remainder = 0;
} else if (partial_dividend < divisor) {
Q[i] = 0;
remainder = partial_dividend;
remainder = (uint32_t)partial_dividend;
} else if (partial_dividend == divisor) {
Q[i] = 1;
remainder = 0;
} else {
Q[i] = partial_dividend / divisor;
remainder = partial_dividend - (Q[i] * divisor);
Q[i] = (uint32_t)(partial_dividend / divisor);
remainder = (uint32_t)(partial_dividend - (Q[i] * divisor));
}
}
if (R)
@ -1991,7 +1991,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
memset(buf, 0, 65);
uint64_t v = VAL;
while (bits_used) {
uint32_t bit = v & 1;
uint32_t bit = (uint32_t)v & 1;
bits_used--;
buf[bits_used] = digits[bit][0];
v >>=1;
@ -2026,7 +2026,8 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
uint64_t mask = radix - 1;
APInt zero(tmp.getBitWidth(), 0);
while (tmp.ne(zero)) {
unsigned digit = (tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask;
unsigned digit =
(unsigned)((tmp.isSingleWord() ? tmp.VAL : tmp.pVal[0]) & mask);
result.insert(insert_at, digits[digit]);
tmp = tmp.lshr(shift);
}
@ -2054,7 +2055,7 @@ std::string APInt::toString(uint8_t radix, bool wantSigned) const {
APInt tmp2(tmp.getBitWidth(), 0);
divide(tmp, tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
&APdigit);
uint32_t digit = APdigit.getZExtValue();
uint32_t digit = (uint32_t)APdigit.getZExtValue();
assert(digit < radix && "divide failed");
result.insert(insert_at,digits[digit]);
tmp = tmp2;