Collapse together the abstract superclass TargetRegInfo and SparcV9RegInfo, its

only concrete implementation.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13977 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Brian Gaeke 2004-06-03 02:45:09 +00:00
parent 44afcb7dcf
commit 498231bc60
13 changed files with 73 additions and 159 deletions

View File

@ -23,7 +23,7 @@ class TargetInstrInfo;
class TargetInstrDescriptor;
class TargetJITInfo;
class TargetSchedInfo;
class TargetRegInfo;
class SparcV9RegInfo;
class TargetFrameInfo;
class MachineCodeEmitter;
class MRegisterInfo;
@ -90,7 +90,7 @@ public:
// These are deprecated interfaces.
virtual const TargetSchedInfo *getSchedInfo() const { return 0; }
virtual const TargetRegInfo *getRegInfo() const { return 0; }
virtual const SparcV9RegInfo *getRegInfo() const { return 0; }
/// addPassesToEmitAssembly - Add passes to the specified pass manager to get
/// assembly langage code emitted. Typically this will involve several steps

View File

@ -37,7 +37,7 @@ class CallArgInfo {
public:
// Constructors
CallArgInfo(Value* _argVal)
: argVal(_argVal), argCopyReg(TargetRegInfo::getInvalidRegNum()),
: argVal(_argVal), argCopyReg(SparcV9RegInfo::getInvalidRegNum()),
passingMethod(0x0) {}
CallArgInfo(const CallArgInfo& obj)

View File

@ -34,7 +34,7 @@ namespace llvm {
class LiveRange;
class MachineInstr;
class RegClass;
class TargetRegInfo;
class SparcV9RegInfo;
class TargetMachine;
class Value;
class Function;
@ -59,7 +59,7 @@ class LiveRangeInfo {
std::vector<RegClass *> & RegClassList;// vector containing register classess
const TargetRegInfo& MRI; // machine reg info
const SparcV9RegInfo& MRI; // machine reg info
std::vector<MachineInstr*> CallRetInstrList; // a list of all call/ret instrs

View File

@ -1003,7 +1003,7 @@ int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC,
/// setRelRegsUsedByThisInst().
///
static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
const TargetRegInfo &TRI) {
const SparcV9RegInfo &TRI) {
unsigned classId = 0;
int classRegNum = TRI.getClassRegNum(RegNo, classId);
if (RC->getID() == classId)

View File

@ -69,7 +69,7 @@ class PhyRegAlloc : public FunctionPass {
FunctionLiveVarInfo *LVI; // LV information for this method
// (already computed for BBs)
LiveRangeInfo *LRI; // LR info (will be computed)
const TargetRegInfo &MRI; // Machine Register information
const SparcV9RegInfo &MRI; // Machine Register information
const unsigned NumOfRegClasses; // recorded here for efficiency
// Map to indicate whether operands of each MachineInstr have been

View File

@ -23,7 +23,7 @@ namespace llvm {
// createInterferenceGraph() above.
//----------------------------------------------------------------------------
RegClass::RegClass(const Function *M,
const TargetRegInfo *_MRI_,
const SparcV9RegInfo *_MRI_,
const TargetRegClassInfo *_MRC_)
: Meth(M), MRI(_MRI_), MRC(_MRC_),
RegClassID( _MRC_->getRegClassID() ),

View File

@ -45,7 +45,7 @@ class TargetRegClassInfo;
//-----------------------------------------------------------------------------
class RegClass {
const Function *const Meth; // Function we are working on
const TargetRegInfo *MRI; // Machine register information
const SparcV9RegInfo *MRI; // Machine register information
const TargetRegClassInfo *const MRC; // Machine reg. class for this RegClass
const unsigned RegClassID; // my int ID
@ -87,7 +87,7 @@ class RegClass {
public:
RegClass(const Function *M,
const TargetRegInfo *_MRI_,
const SparcV9RegInfo *_MRI_,
const TargetRegClassInfo *_MRC_);
inline void createInterferenceGraph() { IG.createGraph(); }

View File

@ -474,7 +474,7 @@ void SparcV9CodeEmitter::emitWord(unsigned Val) {
unsigned
SparcV9CodeEmitter::getRealRegNum(unsigned fakeReg,
MachineInstr &MI) {
const TargetRegInfo &RI = *TM.getRegInfo();
const SparcV9RegInfo &RI = *TM.getRegInfo();
unsigned regClass, regType = RI.getRegType(fakeReg);
// At least map fakeReg into its class
fakeReg = RI.getClassRegNum(fakeReg, regClass);

View File

@ -2527,7 +2527,7 @@ GetInstructionsByRule(InstructionNode* subtreeRoot,
const Type* argType = argVal->getType();
unsigned regType = regInfo.getRegTypeForDataType(argType);
unsigned argSize = target.getTargetData().getTypeSize(argType);
int regNumForArg = TargetRegInfo::getInvalidRegNum();
int regNumForArg = SparcV9RegInfo::getInvalidRegNum();
unsigned regClassIDOfArgReg;
// Check for FP arguments to varargs functions.

View File

@ -9,7 +9,7 @@
//
// This file defines the register classes used by the SparcV9 target. It
// implicitly defines (using enums) the "class register numbers" used in
// the SparcV9 target, which are converted using a formula in the TargetRegInfo
// the SparcV9 target, which are converted using a formula in the SparcV9RegInfo
// class to "unified register numbers".
//
//===----------------------------------------------------------------------===//

View File

@ -36,7 +36,7 @@ enum {
};
SparcV9RegInfo::SparcV9RegInfo(const SparcV9TargetMachine &tgt)
: TargetRegInfo(tgt), NumOfIntArgRegs(6), NumOfFloatArgRegs(32)
: target (tgt), NumOfIntArgRegs (6), NumOfFloatArgRegs (32)
{
MachineRegClassArr.push_back(new SparcV9IntRegClass(IntRegClassID));
MachineRegClassArr.push_back(new SparcV9FloatRegClass(FloatRegClassID));

View File

@ -53,7 +53,7 @@ public:
// This defaults to marking a single register but may mark multiple
// registers when a single number denotes paired registers.
//
virtual void markColorsUsed(unsigned RegInClass,
void markColorsUsed(unsigned RegInClass,
int UserRegType,
int RegTypeWanted,
std::vector<bool> &IsColorUsedArr) const {
@ -69,7 +69,7 @@ public:
// for paired registers and other such silliness.
// It returns -1 if no unused color is found.
//
virtual int findUnusedColor(int RegTypeWanted,
int findUnusedColor(int RegTypeWanted,
const std::vector<bool> &IsColorUsedArr) const {
// find first unused color in the IsColorUsedArr directly
unsigned NC = this->getNumOfAvailRegs();
@ -82,30 +82,28 @@ public:
// This method should find a color which is not used by neighbors
// (i.e., a false position in IsColorUsedArr) and
virtual void colorIGNode(IGNode *Node,
const std::vector<bool> &IsColorUsedArr) const = 0;
void colorIGNode(IGNode *Node,
const std::vector<bool> &IsColorUsedArr) const;
// Check whether a specific register is volatile, i.e., whether it is not
// preserved across calls
virtual bool isRegVolatile(int Reg) const = 0;
bool isRegVolatile(int Reg) const;
// Check whether a specific register is modified as a side-effect of the
// call instruction itself,
virtual bool modifiedByCall(int Reg) const {return false; }
bool modifiedByCall(int Reg) const {return false; }
virtual const char* const getRegName(unsigned reg) const = 0;
virtual const char* const getRegName(unsigned reg) const;
TargetRegClassInfo(unsigned ID, unsigned NVR, unsigned NAR)
: RegClassID(ID), NumOfAvailRegs(NVR), NumOfAllRegs(NAR) {}
};
//---------------------------------------------------------------------------
/// TargetRegInfo - Interface to register info of target machine
/// SparcV9RegInfo - Interface to register info of SparcV9 target machine
///
class TargetRegInfo {
TargetRegInfo(const TargetRegInfo &); // DO NOT IMPLEMENT
void operator=(const TargetRegInfo &); // DO NOT IMPLEMENT
class SparcV9RegInfo {
SparcV9RegInfo(const SparcV9RegInfo &); // DO NOT IMPLEMENT
void operator=(const SparcV9RegInfo &); // DO NOT IMPLEMENT
protected:
// A vector of all machine register classes
//
@ -119,20 +117,21 @@ public:
//
static int getInvalidRegNum() { return -1; }
TargetRegInfo(const TargetMachine& tgt) : target(tgt) { }
virtual ~TargetRegInfo() {
for (unsigned i = 0, e = MachineRegClassArr.size(); i != e; ++i)
delete MachineRegClassArr[i];
}
// According the definition of a MachineOperand class, a Value in a
// machine instruction can go into either a normal register or a
// condition code register. If isCCReg is true below, the ID of the condition
// code register class will be returned. Otherwise, the normal register
// class (eg. int, float) must be returned.
virtual unsigned getRegClassIDOfType (const Type *type,
bool isCCReg = false) const = 0;
virtual unsigned getRegClassIDOfRegType(int regType) const = 0;
// To find the register class used for a specified Type
//
unsigned getRegClassIDOfType (const Type *type,
bool isCCReg = false) const;
// To find the register class to which a specified register belongs
//
unsigned getRegClassIDOfRegType(int regType) const;
unsigned getRegClassIDOfReg(int unifiedRegNum) const {
unsigned classId = 0;
@ -148,88 +147,48 @@ public:
return MachineRegClassArr[i];
}
// returns the register that is hardwired to zero if any (-1 if none)
// getZeroRegNum - returns the register that is hardwired to always contain
// zero, if any (-1 if none). This is the unified register number.
//
virtual unsigned getZeroRegNum() const = 0;
// Number of registers used for passing int args (usually 6: %o0 - %o5)
// and float args (usually 32: %f0 - %f31)
//
virtual unsigned const getNumOfIntArgRegs() const = 0;
virtual unsigned const getNumOfFloatArgRegs() const = 0;
unsigned getZeroRegNum() const;
// The following methods are used to color special live ranges (e.g.
// method args and return values etc.) with specific hardware registers
// as required. See SparcRegInfo.cpp for the implementation for Sparc.
//
virtual void suggestRegs4MethodArgs(const Function *Func,
LiveRangeInfo& LRI) const = 0;
void suggestRegs4MethodArgs(const Function *Func,
LiveRangeInfo& LRI) const;
virtual void suggestRegs4CallArgs(MachineInstr *CallI,
LiveRangeInfo& LRI) const = 0;
void suggestRegs4CallArgs(MachineInstr *CallI,
LiveRangeInfo& LRI) const;
virtual void suggestReg4RetValue(MachineInstr *RetI,
LiveRangeInfo& LRI) const = 0;
void suggestReg4RetValue(MachineInstr *RetI,
LiveRangeInfo& LRI) const;
virtual void colorMethodArgs(const Function *Func,
void colorMethodArgs(const Function *Func,
LiveRangeInfo &LRI,
std::vector<MachineInstr*>& InstrnsBefore,
std::vector<MachineInstr*>& InstrnsAfter) const = 0;
std::vector<MachineInstr*>& InstrnsAfter) const;
// The following methods are used to generate "copy" machine instructions
// for an architecture. Currently they are used in TargetRegClass
// interface. However, they can be moved to TargetInstrInfo interface if
// necessary.
//
// The function regTypeNeedsScratchReg() can be used to check whether a
// scratch register is needed to copy a register of type `regType' to
// or from memory. If so, such a scratch register can be provided by
// the caller (e.g., if it knows which regsiters are free); otherwise
// an arbitrary one will be chosen and spilled by the copy instructions.
// If a scratch reg is needed, the reg. type that must be used
// for scratch registers is returned in scratchRegType.
//
virtual bool regTypeNeedsScratchReg(int RegType,
int& scratchRegType) const = 0;
virtual void cpReg2RegMI(std::vector<MachineInstr*>& mvec,
unsigned SrcReg, unsigned DestReg,
int RegType) const = 0;
virtual void cpReg2MemMI(std::vector<MachineInstr*>& mvec,
unsigned SrcReg, unsigned DestPtrReg, int Offset,
int RegType, int scratchReg = -1) const=0;
virtual void cpMem2RegMI(std::vector<MachineInstr*>& mvec,
unsigned SrcPtrReg, int Offset, unsigned DestReg,
int RegType, int scratchReg = -1) const=0;
virtual void cpValue2Value(Value *Src, Value *Dest,
std::vector<MachineInstr*>& mvec) const = 0;
// Check whether a specific register is volatile, i.e., whether it is not
// preserved across calls
inline virtual bool isRegVolatile(int RegClassID, int Reg) const {
inline bool isRegVolatile(int RegClassID, int Reg) const {
return MachineRegClassArr[RegClassID]->isRegVolatile(Reg);
}
// Check whether a specific register is modified as a side-effect of the
// call instruction itself,
inline virtual bool modifiedByCall(int RegClassID, int Reg) const {
inline bool modifiedByCall(int RegClassID, int Reg) const {
return MachineRegClassArr[RegClassID]->modifiedByCall(Reg);
}
// Returns the reg used for pushing the address when a method is called.
// This can be used for other purposes between calls
// getCallAddressReg - Returns the reg used for pushing the address
// when a method is called. This can be used for other purposes
// between calls
//
virtual unsigned getCallAddressReg() const = 0;
unsigned getCallAddressReg() const;
// Returns the register containing the return address.
//It should be made sure that this
// register contains the return value when a return instruction is reached.
//
virtual unsigned getReturnAddressReg() const = 0;
// Each register class has a separate space for register IDs. To convert
// a regId in a register class to a common Id, or vice versa,
// we use the folloing two methods.
@ -272,29 +231,18 @@ public:
return MachineRegClassArr[regClassID]->getRegName(regNumInClass);
}
// Get the register type for a register identified different ways.
// Note that getRegTypeForLR(LR) != getRegTypeForDataType(LR->getType())!
// The reg class of a LR depends both on the Value types in it and whether
// they are CC registers or not (for example).
virtual int getRegTypeForDataType(const Type* type) const = 0;
virtual int getRegTypeForLR(const LiveRange *LR) const = 0;
virtual int getRegType(int unifiedRegNum) const = 0;
// The following methods are used to get the frame/stack pointers
//
virtual unsigned getFramePointer() const = 0;
virtual unsigned getStackPointer() const = 0;
// This method gives the the number of bytes of stack space allocated
// to a register when it is spilled to the stack.
// to a register when it is spilled to the stack, according to its
// register type.
//
virtual int getSpilledRegSize(int RegType) const = 0;
};
// For SparcV9, currently we allocate 8 bytes on stack for all
// register types. We can optimize this later if necessary to save stack
// space (However, should make sure that stack alignment is correct)
//
int getSpilledRegSize(int RegType) const {
return 8;
}
/// This class implements the virtual class TargetRegInfo for SparcV9.
///
class SparcV9RegInfo : public TargetRegInfo {
private:
// Number of registers used for passing int args (usually 6: %o0 - %o5)
//
@ -346,24 +294,10 @@ public:
SparcV9RegInfo(const SparcV9TargetMachine &tgt);
// To find the register class used for a specified Type
//
unsigned getRegClassIDOfType(const Type *type,
bool isCCReg = false) const;
// To find the register class to which a specified register belongs
//
unsigned getRegClassIDOfRegType(int regType) const;
// getZeroRegNum - returns the register that contains always zero this is the
// unified register number
//
virtual unsigned getZeroRegNum() const;
// getCallAddressReg - returns the reg used for pushing the address when a
// function is called. This can be used for other purposes between calls
//
unsigned getCallAddressReg() const;
~SparcV9RegInfo() {
for (unsigned i = 0, e = MachineRegClassArr.size(); i != e; ++i)
delete MachineRegClassArr[i];
}
// Returns the register containing the return address.
// It should be made sure that this register contains the return
@ -385,35 +319,10 @@ public:
int regNumForFPArg(unsigned RegType, bool inCallee, bool isVarArgsCall,
unsigned argNo, unsigned& regClassId) const;
// The following methods are used to color special live ranges (e.g.
// function args and return values etc.) with specific hardware registers
// as required. See SparcV9RegInfo.cpp for the implementation for SparcV9.
//
void suggestRegs4MethodArgs(const Function *Meth,
LiveRangeInfo& LRI) const;
void suggestRegs4CallArgs(MachineInstr *CallMI,
LiveRangeInfo& LRI) const;
void suggestReg4RetValue(MachineInstr *RetMI,
LiveRangeInfo& LRI) const;
void colorMethodArgs(const Function *Meth, LiveRangeInfo& LRI,
std::vector<MachineInstr*>& InstrnsBefore,
std::vector<MachineInstr*>& InstrnsAfter) const;
// method used for printing a register for debugging purposes
//
void printReg(const LiveRange *LR) const;
// returns the # of bytes of stack space allocated for each register
// type. For SparcV9, currently we allocate 8 bytes on stack for all
// register types. We can optimize this later if necessary to save stack
// space (However, should make sure that stack alignment is correct)
//
inline int getSpilledRegSize(int RegType) const {
return 8;
}
// To obtain the return value and the indirect call address (if any)
// contained in a CALL machine instruction
@ -422,14 +331,19 @@ public:
const Value * getCallInstIndirectAddrVal(const MachineInstr *CallMI) const;
// The following methods are used to generate "copy" machine instructions
// for an architecture.
// for an architecture. Currently they are used in TargetRegClass
// interface. However, they can be moved to TargetInstrInfo interface if
// necessary.
//
// The function regTypeNeedsScratchReg() can be used to check whether a
// scratch register is needed to copy a register of type `regType' to
// or from memory. If so, such a scratch register can be provided by
// the caller (e.g., if it knows which regsiters are free); otherwise
// an arbitrary one will be chosen and spilled by the copy instructions.
// If a scratch reg is needed, the reg. type that must be used
// for scratch registers is returned in scratchRegType.
//
bool regTypeNeedsScratchReg(int RegType,
int& scratchRegClassId) const;
@ -456,8 +370,8 @@ public:
int getRegTypeForLR(const LiveRange *LR) const;
int getRegType(int unifiedRegNum) const;
virtual unsigned getFramePointer() const;
virtual unsigned getStackPointer() const;
unsigned getFramePointer() const;
unsigned getStackPointer() const;
};
} // End llvm namespace

View File

@ -36,7 +36,7 @@ public:
virtual const TargetInstrInfo *getInstrInfo() const { return &instrInfo; }
virtual const TargetSchedInfo *getSchedInfo() const { return &schedInfo; }
virtual const TargetRegInfo *getRegInfo() const { return &regInfo; }
virtual const SparcV9RegInfo *getRegInfo() const { return &regInfo; }
virtual const TargetFrameInfo *getFrameInfo() const { return &frameInfo; }
virtual TargetJITInfo *getJITInfo() { return &jitInfo; }
virtual const MRegisterInfo *getRegisterInfo() const {