StackMap: Implement support for DirectMemRefOp.

A Direct stack map location records the address of frame index. This
address is itself the value that the runtime requested. This differs
from IndirectMemRefOp locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can
directly communicate the address if an alloca, while IndirectMemRefOp
handle register spills.

For example:

entry:
  %a = alloca i64...
  llvm.experimental.stackmap(i32 <ID>, i32 <shadowBytes>, i64* %a)

Since both the alloca and stackmap intrinsic are in the entry block,
and the intrinsic takes the address of the alloca, the runtime can
assume that LLVM will not substitute alloca with any intervening
value. This must be verified by the runtime by checking that the stack
map's location is a Direct location type. The runtime can then
determine the alloca's relative location on the stack immediately after
compilation, or at any time thereafter. This differs from Register and
Indirect locations, because the runtime can only read the values in
those locations when execution reaches the instruction address of the
stack map.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@195712 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Andrew Trick 2013-11-26 02:03:25 +00:00
parent 151ed66489
commit 501aeea325
7 changed files with 144 additions and 20 deletions

View File

@ -805,6 +805,7 @@ def STACKMAP : Instruction {
let InOperandList = (ins i32imm:$id, i32imm:$nbytes, variable_ops);
let isCall = 1;
let mayLoad = 1;
let usesCustomInserter = 1;
}
def PATCHPOINT : Instruction {
let OutOperandList = (outs unknown:$dst);
@ -812,6 +813,7 @@ def PATCHPOINT : Instruction {
i32imm:$nargs, i32imm:$cc, variable_ops);
let isCall = 1;
let mayLoad = 1;
let usesCustomInserter = 1;
}
}

View File

@ -6783,6 +6783,21 @@ SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx,
/// \brief Add a stack map intrinsic call's live variable operands to a stackmap
/// or patchpoint target node's operand list.
///
/// Constants are converted to TargetConstants purely as an optimization to
/// avoid constant materialization and register allocation.
///
/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
/// generate addess computation nodes, and so ExpandISelPseudo can convert the
/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
/// address materialization and register allocation, but may also be required
/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
/// alloca in the entry block, then the runtime may assume that the alloca's
/// StackMap location can be read immediately after compilation and that the
/// location is valid at any point during execution (this is similar to the
/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
/// only available in a register, then the runtime would need to trap when
/// execution reaches the StackMap in order to read the alloca's location.
static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
SmallVectorImpl<SDValue> &Ops,
SelectionDAGBuilder &Builder) {
@ -6793,6 +6808,10 @@ static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx,
Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
Ops.push_back(
Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
} else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
Ops.push_back(
Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
} else
Ops.push_back(OpVal);
}

View File

@ -15811,6 +15811,51 @@ X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
return MBB;
}
/// Convert any TargetFrameIndex operands into the x86-specific pattern of five
/// memory operands that is recognized by PrologEpilogInserter.
MachineBasicBlock *
X86TargetLowering::emitPatchPoint(MachineInstr *MI,
MachineBasicBlock *MBB) const {
const TargetMachine &TM = getTargetMachine();
const X86InstrInfo *TII = static_cast<const X86InstrInfo*>(TM.getInstrInfo());
// MI changes inside this loop as we grow operands.
for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
MachineOperand &MO = MI->getOperand(OperIdx);
if (!MO.isFI())
continue;
// foldMemoryOperand builds a new MI after replacing a single FI operand
// with the canonical set of five x86 addressing-mode operands.
int FI = MO.getIndex();
MachineFunction &MF = *MBB->getParent();
SmallVector<unsigned, 1> FIOps(1, OperIdx);
MachineInstr *NewMI = TII->foldMemoryOperandImpl(MF, MI, FIOps, FI);
assert(NewMI && "Cannot fold frame index operand into stackmap.");
// Inherit previous memory operands.
NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
assert(NewMI->mayLoad() && "Folded a stackmap use to a non-load!");
// Add a new memory operand for this FI.
const MachineFrameInfo &MFI = *MF.getFrameInfo();
assert(MFI.getObjectOffset(FI) != -1);
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
MachineMemOperand::MOLoad,
TM.getDataLayout()->getPointerSize(),
MFI.getObjectAlignment(FI));
NewMI->addMemOperand(MF, MMO);
// Replace the instruction and update the operand index.
MBB->insert(MachineBasicBlock::iterator(MI), NewMI);
OperIdx += (NewMI->getNumOperands() - MI->getNumOperands()) - 1;
MI->eraseFromParent();
MI = NewMI;
}
return MBB;
}
MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
@ -16038,6 +16083,10 @@ X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
case X86::EH_SjLj_LongJmp32:
case X86::EH_SjLj_LongJmp64:
return emitEHSjLjLongJmp(MI, BB);
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, BB);
}
}

View File

@ -973,6 +973,9 @@ namespace llvm {
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *emitPatchPoint(MachineInstr *MI,
MachineBasicBlock *MBB) const;
/// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent, for use with the given x86 condition code.
SDValue EmitTest(SDValue Op0, unsigned X86CC, SelectionDAG &DAG) const;

View File

@ -4237,18 +4237,27 @@ static MachineInstr* foldPatchpoint(MachineFunction &MF,
for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
MachineOperand &MO = MI->getOperand(i);
if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
assert(MO.getReg() && "patchpoint can only fold a vreg operand");
// Compute the spill slot size and offset.
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(MO.getReg());
unsigned SpillSize;
unsigned SpillOffset;
bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize,
SpillOffset, &MF.getTarget());
if (!Valid)
report_fatal_error("cannot spill patchpoint subregister operand");
MIB.addOperand(MachineOperand::CreateImm(StackMaps::IndirectMemRefOp));
MIB.addOperand(MachineOperand::CreateImm(SpillSize));
if (MO.isReg()) {
// Compute the spill slot size and offset.
const TargetRegisterClass *RC =
MF.getRegInfo().getRegClass(MO.getReg());
bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize,
SpillOffset, &MF.getTarget());
if (!Valid)
report_fatal_error("cannot spill patchpoint subregister operand");
MIB.addOperand(MachineOperand::CreateImm(StackMaps::IndirectMemRefOp));
MIB.addOperand(MachineOperand::CreateImm(SpillSize));
}
else {
// ExpandISelPseudos is converting a simple frame index into a 5-operand
// frame index.
assert(MO.isFI() && MO.getIndex() == FrameIndex &&
"patchpoint can only fold a vreg operand or frame index");
SpillOffset = 0;
MIB.addOperand(MachineOperand::CreateImm(StackMaps::DirectMemRefOp));
}
MIB.addOperand(MachineOperand::CreateFI(FrameIndex));
addOffset(MIB, SpillOffset);
}

View File

@ -1,4 +1,4 @@
; RUN: llc < %s -mtriple=x86_64-apple-darwin | FileCheck %s
; RUN: llc < %s -mtriple=x86_64-apple-darwin -disable-fp-elim | FileCheck %s
; Stackmap Header: no constants - 6 callsites
; CHECK-LABEL: .section __LLVM_STACKMAPS,__llvm_stackmaps
@ -95,11 +95,11 @@ entry:
; CHECK-NEXT: .byte 8
; CHECK-NEXT: .short {{[0-9]+}}
; CHECK-NEXT: .long 0
; Loc 1: Register <-- this will be folded once folding for FI is implemented
; CHECK-NEXT: .byte 1
; Loc 1: Direct RBP - ofs
; CHECK-NEXT: .byte 2
; CHECK-NEXT: .byte 8
; CHECK-NEXT: .short {{[0-9]+}}
; CHECK-NEXT: .long 0
; CHECK-NEXT: .short 6
; CHECK-NEXT: .long
define i64 @property_access3() nounwind ssp uwtable {
entry:
%obj = alloca i64, align 8
@ -330,13 +330,13 @@ entry:
; Loc 3: Arg2 spilled to RBP +
; CHECK-NEXT: .byte 3
; CHECK-NEXT: .byte 8
; CHECK-NEXT: .short 7
; CHECK-NEXT: .long {{[0-9]+}}
; CHECK-NEXT: .short 6
; CHECK-NEXT: .long
; Loc 4: Arg3 spilled to RBP +
; CHECK-NEXT: .byte 3
; CHECK-NEXT: .byte 8
; CHECK-NEXT: .short 7
; CHECK-NEXT: .long {{[0-9]+}}
; CHECK-NEXT: .short 6
; CHECK-NEXT: .long
define i64 @patchpoint_spillargs(i64 %p1, i64 %p2, i64 %p3, i64 %p4) {
entry:
tail call void asm sideeffect "nop", "~{ax},~{bx},~{cx},~{dx},~{bp},~{si},~{di},~{r8},~{r9},~{r10},~{r11},~{r12},~{r13},~{r14},~{r15}"() nounwind

View File

@ -9,7 +9,7 @@
; CHECK-NEXT: .long 1
; CHECK-NEXT: .quad 4294967296
; Num Callsites
; CHECK-NEXT: .long 12
; CHECK-NEXT: .long 14
; Constant arguments
;
@ -305,6 +305,48 @@ define void @liveConstant() {
ret void
}
; Directly map an alloca's address.
;
; Callsite 16
; CHECK: .long 16
; CHECK-LABEL: .long L{{.*}}-_directFrameIdx
; CHECK-NEXT: .short 0
; 1 location
; CHECK-NEXT: .short 1
; Loc 0: Direct RBP - ofs
; CHECK-NEXT: .byte 2
; CHECK-NEXT: .byte 8
; CHECK-NEXT: .short 6
; CHECK-NEXT: .long
; Callsite 17
; CHECK-NEXT: .long 17
; CHECK-NEXT: .long L{{.*}}-_directFrameIdx
; CHECK-NEXT: .short 0
; 2 locations
; CHECK-NEXT: .short 2
; Loc 0: Direct RBP - ofs
; CHECK-NEXT: .byte 2
; CHECK-NEXT: .byte 8
; CHECK-NEXT: .short 6
; CHECK-NEXT: .long
; Loc 1: Direct RBP - ofs
; CHECK-NEXT: .byte 2
; CHECK-NEXT: .byte 8
; CHECK-NEXT: .short 6
; CHECK-NEXT: .long
define void @directFrameIdx() {
entry:
%metadata1 = alloca i64, i32 3, align 8
store i64 11, i64* %metadata1
store i64 12, i64* %metadata1
store i64 13, i64* %metadata1
call void (i32, i32, ...)* @llvm.experimental.stackmap(i32 16, i32 0, i64* %metadata1)
%metadata2 = alloca i8, i32 4, align 8
%metadata3 = alloca i16, i32 4, align 8
call void (i32, i32, i8*, i32, ...)* @llvm.experimental.patchpoint.void(i32 17, i32 5, i8* null, i32 0, i8* %metadata2, i16* %metadata3)
ret void
}
declare void @llvm.experimental.stackmap(i32, i32, ...)
declare void @llvm.experimental.patchpoint.void(i32, i32, i8*, i32, ...)
declare i64 @llvm.experimental.patchpoint.i64(i32, i32, i8*, i32, ...)