reapply 86289, 86278, 86270, 86267, 86266 & 86264 plus a fix

(making pred factoring only happen if threading is guaranteed
to be successful).

This now survives an X86-64 bootstrap of llvm-gcc.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@86355 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2009-11-07 08:05:03 +00:00
parent e880efe446
commit 5729d38c81
3 changed files with 416 additions and 243 deletions

View File

@ -72,17 +72,23 @@ namespace {
void FindLoopHeaders(Function &F); void FindLoopHeaders(Function &F);
bool ProcessBlock(BasicBlock *BB); bool ProcessBlock(BasicBlock *BB);
bool ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, BasicBlock *SuccBB); bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
BasicBlock *SuccBB);
bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
BasicBlock *PredBB); BasicBlock *PredBB);
BasicBlock *FactorCommonPHIPreds(PHINode *PN, Value *Val); typedef SmallVectorImpl<std::pair<ConstantInt*,
BasicBlock*> > PredValueInfo;
bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
PredValueInfo &Result);
bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB); bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
bool ProcessJumpOnPHI(PHINode *PN); bool ProcessJumpOnPHI(PHINode *PN);
bool ProcessBranchOnLogical(Value *V, BasicBlock *BB, bool isAnd);
bool ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB);
bool SimplifyPartiallyRedundantLoad(LoadInst *LI); bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
}; };
@ -198,28 +204,133 @@ void JumpThreading::FindLoopHeaders(Function &F) {
LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
} }
/// FactorCommonPHIPreds - If there are multiple preds with the same incoming /// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
/// value for the PHI, factor them together so we get one block to thread for /// hand sides of the compare instruction, try to determine the result. If the
/// the whole group. /// result can not be determined, a null pointer is returned.
/// This is important for things like "phi i1 [true, true, false, true, x]" static Constant *GetResultOfComparison(CmpInst::Predicate pred,
/// where we only need to clone the block for the true blocks once. Value *LHS, Value *RHS) {
/// if (Constant *CLHS = dyn_cast<Constant>(LHS))
BasicBlock *JumpThreading::FactorCommonPHIPreds(PHINode *PN, Value *Val) { if (Constant *CRHS = dyn_cast<Constant>(RHS))
SmallVector<BasicBlock*, 16> CommonPreds; return ConstantExpr::getCompare(pred, CLHS, CRHS);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == Val)
CommonPreds.push_back(PN->getIncomingBlock(i));
if (CommonPreds.size() == 1) if (LHS == RHS)
return CommonPreds[0]; if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType())) {
if (ICmpInst::isTrueWhenEqual(pred))
DEBUG(errs() << " Factoring out " << CommonPreds.size() return ConstantInt::getTrue(LHS->getContext());
<< " common predecessors.\n"); else
return SplitBlockPredecessors(PN->getParent(), return ConstantInt::getFalse(LHS->getContext());
&CommonPreds[0], CommonPreds.size(), }
".thr_comm", this); return 0;
} }
/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
/// if we can infer that the value is a known ConstantInt in any of our
/// predecessors. If so, return the known the list of value and pred BB in the
/// result vector. If a value is known to be undef, it is returned as null.
///
/// The BB basic block is known to start with a PHI node.
///
/// This returns true if there were any known values.
///
///
/// TODO: Per PR2563, we could infer value range information about a predecessor
/// based on its terminator.
bool JumpThreading::
ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
// If V is a constantint, then it is known in all predecessors.
if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
ConstantInt *CI = dyn_cast<ConstantInt>(V);
Result.resize(TheFirstPHI->getNumIncomingValues());
for (unsigned i = 0, e = Result.size(); i != e; ++i)
Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
return true;
}
// If V is a non-instruction value, or an instruction in a different block,
// then it can't be derived from a PHI.
Instruction *I = dyn_cast<Instruction>(V);
if (I == 0 || I->getParent() != BB)
return false;
/// If I is a PHI node, then we know the incoming values for any constants.
if (PHINode *PN = dyn_cast<PHINode>(I)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *InVal = PN->getIncomingValue(i);
if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
}
}
return !Result.empty();
}
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
// Handle some boolean conditions.
if (I->getType()->getPrimitiveSizeInBits() == 1) {
// X | true -> true
// X & false -> false
if (I->getOpcode() == Instruction::Or ||
I->getOpcode() == Instruction::And) {
ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
if (LHSVals.empty() && RHSVals.empty())
return false;
ConstantInt *InterestingVal;
if (I->getOpcode() == Instruction::Or)
InterestingVal = ConstantInt::getTrue(I->getContext());
else
InterestingVal = ConstantInt::getFalse(I->getContext());
// Scan for the sentinel.
for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
Result.push_back(LHSVals[i]);
for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
Result.push_back(RHSVals[i]);
return !Result.empty();
}
// TODO: Should handle the NOT form of XOR.
}
// Handle compare with phi operand, where the PHI is defined in this block.
if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
if (PN && PN->getParent() == BB) {
// We can do this simplification if any comparisons fold to true or false.
// See if any do.
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
BasicBlock *PredBB = PN->getIncomingBlock(i);
Value *LHS = PN->getIncomingValue(i);
Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), LHS, RHS);
if (Res == 0) continue;
if (isa<UndefValue>(Res))
Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
Result.push_back(std::make_pair(CI, PredBB));
}
return !Result.empty();
}
// TODO: We could also recurse to see if we can determine constants another
// way.
}
return false;
}
/// GetBestDestForBranchOnUndef - If we determine that the specified block ends /// GetBestDestForBranchOnUndef - If we determine that the specified block ends
/// in an undefined jump, decide which block is best to revector to. /// in an undefined jump, decide which block is best to revector to.
@ -250,7 +361,7 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
// successor, merge the blocks. This encourages recursive jump threading // successor, merge the blocks. This encourages recursive jump threading
// because now the condition in this block can be threaded through // because now the condition in this block can be threaded through
// predecessors of our predecessor block. // predecessors of our predecessor block.
if (BasicBlock *SinglePred = BB->getSinglePredecessor()) if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
if (SinglePred->getTerminator()->getNumSuccessors() == 1 && if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
SinglePred != BB) { SinglePred != BB) {
// If SinglePred was a loop header, BB becomes one. // If SinglePred was a loop header, BB becomes one.
@ -266,10 +377,10 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
BB->moveBefore(&BB->getParent()->getEntryBlock()); BB->moveBefore(&BB->getParent()->getEntryBlock());
return true; return true;
} }
}
// See if this block ends with a branch or switch. If so, see if the
// condition is a phi node. If so, and if an entry of the phi node is a // Look to see if the terminator is a branch of switch, if not we can't thread
// constant, we can thread the block. // it.
Value *Condition; Value *Condition;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) { if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
// Can't thread an unconditional jump. // Can't thread an unconditional jump.
@ -345,44 +456,26 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
if (PN->getParent() == BB) if (PN->getParent() == BB)
return ProcessJumpOnPHI(PN); return ProcessJumpOnPHI(PN);
// If this is a conditional branch whose condition is and/or of a phi, try to
// simplify it.
if ((CondInst->getOpcode() == Instruction::And ||
CondInst->getOpcode() == Instruction::Or) &&
isa<BranchInst>(BB->getTerminator()) &&
ProcessBranchOnLogical(CondInst, BB,
CondInst->getOpcode() == Instruction::And))
return true;
if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
if (isa<PHINode>(CondCmp->getOperand(0))) { if (!isa<PHINode>(CondCmp->getOperand(0)) ||
// If we have "br (phi != 42)" and the phi node has any constant values cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
// as operands, we can thread through this block. // If we have a comparison, loop over the predecessors to see if there is
// // a condition with a lexically identical value.
// If we have "br (cmp phi, x)" and the phi node contains x such that the pred_iterator PI = pred_begin(BB), E = pred_end(BB);
// comparison uniquely identifies the branch target, we can thread for (; PI != E; ++PI)
// through this block. if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && *PI != BB) {
if (ProcessBranchOnCompare(CondCmp, BB)) if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
return true; if (CI->getOperand(0) == CondCmp->getOperand(0) &&
} CI->getOperand(1) == CondCmp->getOperand(1) &&
CI->getPredicate() == CondCmp->getPredicate()) {
// If we have a comparison, loop over the predecessors to see if there is // TODO: Could handle things like (x != 4) --> (x == 17)
// a condition with the same value. if (ProcessBranchOnDuplicateCond(*PI, BB))
pred_iterator PI = pred_begin(BB), E = pred_end(BB); return true;
for (; PI != E; ++PI) }
if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
if (PBI->isConditional() && *PI != BB) {
if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
if (CI->getOperand(0) == CondCmp->getOperand(0) &&
CI->getOperand(1) == CondCmp->getOperand(1) &&
CI->getPredicate() == CondCmp->getPredicate()) {
// TODO: Could handle things like (x != 4) --> (x == 17)
if (ProcessBranchOnDuplicateCond(*PI, BB))
return true;
} }
} }
} }
} }
// Check for some cases that are worth simplifying. Right now we want to look // Check for some cases that are worth simplifying. Right now we want to look
@ -401,6 +494,19 @@ bool JumpThreading::ProcessBlock(BasicBlock *BB) {
if (SimplifyPartiallyRedundantLoad(LI)) if (SimplifyPartiallyRedundantLoad(LI))
return true; return true;
// Handle a variety of cases where we are branching on something derived from
// a PHI node in the current block. If we can prove that any predecessors
// compute a predictable value based on a PHI node, thread those predecessors.
//
// We only bother doing this if the current block has a PHI node and if the
// conditional instruction lives in the current block. If either condition
// fail, this won't be a computable value anyway.
if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
if (ProcessThreadableEdges(CondInst, BB))
return true;
// TODO: If we have: "br (X > 0)" and we have a predecessor where we know // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
// "(X == 4)" thread through this block. // "(X == 4)" thread through this block.
@ -458,8 +564,11 @@ bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
// Next, figure out which successor we are threading to. // Next, figure out which successor we are threading to.
BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir); BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
SmallVector<BasicBlock*, 2> Preds;
Preds.push_back(PredBB);
// Ok, try to thread it! // Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB); return ThreadEdge(BB, Preds, SuccBB);
} }
/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that /// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
@ -689,6 +798,174 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
return true; return true;
} }
/// FindMostPopularDest - The specified list contains multiple possible
/// threadable destinations. Pick the one that occurs the most frequently in
/// the list.
static BasicBlock *
FindMostPopularDest(BasicBlock *BB,
const SmallVectorImpl<std::pair<BasicBlock*,
BasicBlock*> > &PredToDestList) {
assert(!PredToDestList.empty());
// Determine popularity. If there are multiple possible destinations, we
// explicitly choose to ignore 'undef' destinations. We prefer to thread
// blocks with known and real destinations to threading undef. We'll handle
// them later if interesting.
DenseMap<BasicBlock*, unsigned> DestPopularity;
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
if (PredToDestList[i].second)
DestPopularity[PredToDestList[i].second]++;
// Find the most popular dest.
DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
BasicBlock *MostPopularDest = DPI->first;
unsigned Popularity = DPI->second;
SmallVector<BasicBlock*, 4> SamePopularity;
for (++DPI; DPI != DestPopularity.end(); ++DPI) {
// If the popularity of this entry isn't higher than the popularity we've
// seen so far, ignore it.
if (DPI->second < Popularity)
; // ignore.
else if (DPI->second == Popularity) {
// If it is the same as what we've seen so far, keep track of it.
SamePopularity.push_back(DPI->first);
} else {
// If it is more popular, remember it.
SamePopularity.clear();
MostPopularDest = DPI->first;
Popularity = DPI->second;
}
}
// Okay, now we know the most popular destination. If there is more than
// destination, we need to determine one. This is arbitrary, but we need
// to make a deterministic decision. Pick the first one that appears in the
// successor list.
if (!SamePopularity.empty()) {
SamePopularity.push_back(MostPopularDest);
TerminatorInst *TI = BB->getTerminator();
for (unsigned i = 0; ; ++i) {
assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
if (std::find(SamePopularity.begin(), SamePopularity.end(),
TI->getSuccessor(i)) == SamePopularity.end())
continue;
MostPopularDest = TI->getSuccessor(i);
break;
}
}
// Okay, we have finally picked the most popular destination.
return MostPopularDest;
}
bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
BasicBlock *BB) {
// If threading this would thread across a loop header, don't even try to
// thread the edge.
if (LoopHeaders.count(BB))
return false;
SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
return false;
assert(!PredValues.empty() &&
"ComputeValueKnownInPredecessors returned true with no values");
DEBUG(errs() << "IN BB: " << *BB;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
errs() << " BB '" << BB->getName() << "': FOUND condition = ";
if (PredValues[i].first)
errs() << *PredValues[i].first;
else
errs() << "UNDEF";
errs() << " for pred '" << PredValues[i].second->getName()
<< "'.\n";
});
// Decide what we want to thread through. Convert our list of known values to
// a list of known destinations for each pred. This also discards duplicate
// predecessors and keeps track of the undefined inputs (which are represented
// as a null dest in the PredToDestList.
SmallPtrSet<BasicBlock*, 16> SeenPreds;
SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
BasicBlock *OnlyDest = 0;
BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
BasicBlock *Pred = PredValues[i].second;
if (!SeenPreds.insert(Pred))
continue; // Duplicate predecessor entry.
// If the predecessor ends with an indirect goto, we can't change its
// destination.
if (isa<IndirectBrInst>(Pred->getTerminator()))
continue;
ConstantInt *Val = PredValues[i].first;
BasicBlock *DestBB;
if (Val == 0) // Undef.
DestBB = 0;
else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
DestBB = BI->getSuccessor(Val->isZero());
else {
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
DestBB = SI->getSuccessor(SI->findCaseValue(Val));
}
// If we have exactly one destination, remember it for efficiency below.
if (i == 0)
OnlyDest = DestBB;
else if (OnlyDest != DestBB)
OnlyDest = MultipleDestSentinel;
PredToDestList.push_back(std::make_pair(Pred, DestBB));
}
// If all edges were unthreadable, we fail.
if (PredToDestList.empty())
return false;
// Determine which is the most common successor. If we have many inputs and
// this block is a switch, we want to start by threading the batch that goes
// to the most popular destination first. If we only know about one
// threadable destination (the common case) we can avoid this.
BasicBlock *MostPopularDest = OnlyDest;
if (MostPopularDest == MultipleDestSentinel)
MostPopularDest = FindMostPopularDest(BB, PredToDestList);
// Now that we know what the most popular destination is, factor all
// predecessors that will jump to it into a single predecessor.
SmallVector<BasicBlock*, 16> PredsToFactor;
for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
if (PredToDestList[i].second == MostPopularDest) {
BasicBlock *Pred = PredToDestList[i].first;
// This predecessor may be a switch or something else that has multiple
// edges to the block. Factor each of these edges by listing them
// according to # occurrences in PredsToFactor.
TerminatorInst *PredTI = Pred->getTerminator();
for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
if (PredTI->getSuccessor(i) == BB)
PredsToFactor.push_back(Pred);
}
// If the threadable edges are branching on an undefined value, we get to pick
// the destination that these predecessors should get to.
if (MostPopularDest == 0)
MostPopularDest = BB->getTerminator()->
getSuccessor(GetBestDestForJumpOnUndef(BB));
// Ok, try to thread it!
return ThreadEdge(BB, PredsToFactor, MostPopularDest);
}
/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in /// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
/// the current block. See if there are any simplifications we can do based on /// the current block. See if there are any simplifications we can do based on
@ -697,47 +974,10 @@ bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) { bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
BasicBlock *BB = PN->getParent(); BasicBlock *BB = PN->getParent();
// See if the phi node has any constant integer or undef values. If so, we // If any of the predecessor blocks end in an unconditional branch, we can
// can determine where the corresponding predecessor will branch. // *duplicate* the jump into that block in order to further encourage jump
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { // threading and to eliminate cases where we have branch on a phi of an icmp
Value *PredVal = PN->getIncomingValue(i); // (branch on icmp is much better).
// Check to see if this input is a constant integer. If so, the direction
// of the branch is predictable.
if (ConstantInt *CI = dyn_cast<ConstantInt>(PredVal)) {
// Merge any common predecessors that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, CI);
BasicBlock *SuccBB;
if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
SuccBB = BI->getSuccessor(CI->isZero());
else {
SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
SuccBB = SI->getSuccessor(SI->findCaseValue(CI));
}
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
}
// If the input is an undef, then it doesn't matter which way it will go.
// Pick an arbitrary dest and thread the edge.
if (UndefValue *UV = dyn_cast<UndefValue>(PredVal)) {
// Merge any common predecessors that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, UV);
BasicBlock *SuccBB =
BB->getTerminator()->getSuccessor(GetBestDestForJumpOnUndef(BB));
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
}
}
// If the incoming values are all variables, we don't know the destination of
// any predecessors. However, if any of the predecessor blocks end in an
// unconditional branch, we can *duplicate* the jump into that block in order
// to further encourage jump threading and to eliminate cases where we have
// branch on a phi of an icmp (branch on icmp is much better).
// We don't want to do this tranformation for switches, because we don't // We don't want to do this tranformation for switches, because we don't
// really want to duplicate a switch. // really want to duplicate a switch.
@ -758,137 +998,6 @@ bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
} }
/// ProcessJumpOnLogicalPHI - PN's basic block contains a conditional branch
/// whose condition is an AND/OR where one side is PN. If PN has constant
/// operands that permit us to evaluate the condition for some operand, thread
/// through the block. For example with:
/// br (and X, phi(Y, Z, false))
/// the predecessor corresponding to the 'false' will always jump to the false
/// destination of the branch.
///
bool JumpThreading::ProcessBranchOnLogical(Value *V, BasicBlock *BB,
bool isAnd) {
// If this is a binary operator tree of the same AND/OR opcode, check the
// LHS/RHS.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
if ((isAnd && BO->getOpcode() == Instruction::And) ||
(!isAnd && BO->getOpcode() == Instruction::Or)) {
if (ProcessBranchOnLogical(BO->getOperand(0), BB, isAnd))
return true;
if (ProcessBranchOnLogical(BO->getOperand(1), BB, isAnd))
return true;
}
// If this isn't a PHI node, we can't handle it.
PHINode *PN = dyn_cast<PHINode>(V);
if (!PN || PN->getParent() != BB) return false;
// We can only do the simplification for phi nodes of 'false' with AND or
// 'true' with OR. See if we have any entries in the phi for this.
unsigned PredNo = ~0U;
ConstantInt *PredCst = ConstantInt::get(Type::getInt1Ty(BB->getContext()),
!isAnd);
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (PN->getIncomingValue(i) == PredCst) {
PredNo = i;
break;
}
}
// If no match, bail out.
if (PredNo == ~0U)
return false;
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredCst);
// Next, figure out which successor we are threading to. If this was an AND,
// the constant must be FALSE, and we must be targeting the 'false' block.
// If this is an OR, the constant must be TRUE, and we must be targeting the
// 'true' block.
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(isAnd);
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
}
/// GetResultOfComparison - Given an icmp/fcmp predicate and the left and right
/// hand sides of the compare instruction, try to determine the result. If the
/// result can not be determined, a null pointer is returned.
static Constant *GetResultOfComparison(CmpInst::Predicate pred,
Value *LHS, Value *RHS,
LLVMContext &Context) {
if (Constant *CLHS = dyn_cast<Constant>(LHS))
if (Constant *CRHS = dyn_cast<Constant>(RHS))
return ConstantExpr::getCompare(pred, CLHS, CRHS);
if (LHS == RHS)
if (isa<IntegerType>(LHS->getType()) || isa<PointerType>(LHS->getType()))
return ICmpInst::isTrueWhenEqual(pred) ?
ConstantInt::getTrue(Context) : ConstantInt::getFalse(Context);
return 0;
}
/// ProcessBranchOnCompare - We found a branch on a comparison between a phi
/// node and a value. If we can identify when the comparison is true between
/// the phi inputs and the value, we can fold the compare for that edge and
/// thread through it.
bool JumpThreading::ProcessBranchOnCompare(CmpInst *Cmp, BasicBlock *BB) {
PHINode *PN = cast<PHINode>(Cmp->getOperand(0));
Value *RHS = Cmp->getOperand(1);
// If the phi isn't in the current block, an incoming edge to this block
// doesn't control the destination.
if (PN->getParent() != BB)
return false;
// We can do this simplification if any comparisons fold to true or false.
// See if any do.
Value *PredVal = 0;
bool TrueDirection = false;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
PredVal = PN->getIncomingValue(i);
Constant *Res = GetResultOfComparison(Cmp->getPredicate(), PredVal,
RHS, Cmp->getContext());
if (!Res) {
PredVal = 0;
continue;
}
// If this folded to a constant expr, we can't do anything.
if (ConstantInt *ResC = dyn_cast<ConstantInt>(Res)) {
TrueDirection = ResC->getZExtValue();
break;
}
// If this folded to undef, just go the false way.
if (isa<UndefValue>(Res)) {
TrueDirection = false;
break;
}
// Otherwise, we can't fold this input.
PredVal = 0;
}
// If no match, bail out.
if (PredVal == 0)
return false;
// If so, we can actually do this threading. Merge any common predecessors
// that will act the same.
BasicBlock *PredBB = FactorCommonPHIPreds(PN, PredVal);
// Next, get our successor.
BasicBlock *SuccBB = BB->getTerminator()->getSuccessor(!TrueDirection);
// Ok, try to thread it!
return ThreadEdge(BB, PredBB, SuccBB);
}
/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
/// predecessor to the PHIBB block. If it has PHI nodes, add entries for /// predecessor to the PHIBB block. If it has PHI nodes, add entries for
/// NewPred using the entries from OldPred (suitably mapped). /// NewPred using the entries from OldPred (suitably mapped).
@ -913,10 +1022,11 @@ static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
} }
} }
/// ThreadEdge - We have decided that it is safe and profitable to thread an /// ThreadEdge - We have decided that it is safe and profitable to factor the
/// edge from PredBB to SuccBB across BB. Transform the IR to reflect this /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
/// change. /// across BB. Transform the IR to reflect this change.
bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB, bool JumpThreading::ThreadEdge(BasicBlock *BB,
const SmallVectorImpl<BasicBlock*> &PredBBs,
BasicBlock *SuccBB) { BasicBlock *SuccBB) {
// If threading to the same block as we come from, we would infinite loop. // If threading to the same block as we come from, we would infinite loop.
if (SuccBB == BB) { if (SuccBB == BB) {
@ -928,8 +1038,7 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
// If threading this would thread across a loop header, don't thread the edge. // If threading this would thread across a loop header, don't thread the edge.
// See the comments above FindLoopHeaders for justifications and caveats. // See the comments above FindLoopHeaders for justifications and caveats.
if (LoopHeaders.count(BB)) { if (LoopHeaders.count(BB)) {
DEBUG(errs() << " Not threading from '" << PredBB->getName() DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
<< "' across loop header BB '" << BB->getName()
<< "' to dest BB '" << SuccBB->getName() << "' to dest BB '" << SuccBB->getName()
<< "' - it might create an irreducible loop!\n"); << "' - it might create an irreducible loop!\n");
return false; return false;
@ -942,6 +1051,17 @@ bool JumpThreading::ThreadEdge(BasicBlock *BB, BasicBlock *PredBB,
return false; return false;
} }
// And finally, do it! Start by factoring the predecessors is needed.
BasicBlock *PredBB;
if (PredBBs.size() == 1)
PredBB = PredBBs[0];
else {
DEBUG(errs() << " Factoring out " << PredBBs.size()
<< " common predecessors.\n");
PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
".thr_comm", this);
}
// And finally, do it! // And finally, do it!
DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '" DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
<< SuccBB->getName() << "' with cost: " << JumpThreadCost << SuccBB->getName() << "' with cost: " << JumpThreadCost

View File

@ -170,5 +170,36 @@ BB4:
} }
;; This tests that the branch in 'merge' can be cloned up into T1.
;; rdar://7367025
define i32 @test7(i1 %cond, i1 %cond2) {
Entry:
; CHECK: @test7
%v1 = call i32 @f1()
br i1 %cond, label %Merge, label %F1
F1:
%v2 = call i32 @f2()
br label %Merge
Merge:
%B = phi i32 [%v1, %Entry], [%v2, %F1]
%M = icmp ne i32 %B, %v1
%N = icmp eq i32 %B, 47
%O = and i1 %M, %N
br i1 %O, label %T2, label %F2
; CHECK: Merge:
; CHECK-NOT: phi
; CHECK-NEXT: %v2 = call i32 @f2()
T2:
call void @f3()
ret i32 %B
F2:
ret i32 %B
; CHECK: F2:
; CHECK-NEXT: phi i32
}

View File

@ -170,3 +170,25 @@ bb32.i:
ret i32 1 ret i32 1
} }
define fastcc void @test5(i1 %tmp, i32 %tmp1) nounwind ssp {
entry:
br i1 %tmp, label %bb12, label %bb13
bb12:
br label %bb13
bb13:
%.lcssa31 = phi i32 [ undef, %bb12 ], [ %tmp1, %entry ]
%A = and i1 undef, undef
br i1 %A, label %bb15, label %bb61
bb15:
ret void
bb61:
ret void
}