Fast-track obviously over-large and over-small exponents during decimal->

integer conversion.  In some such cases this makes us one or two orders
of magnitude faster than NetBSD's libc.  Glibc seems to have a similar
fast path.

Also, tighten up some upper bounds to save a bit of memory.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@42984 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Neil Booth 2007-10-15 15:00:55 +00:00
parent 65f8d3bf6b
commit 686700e325

View File

@ -59,7 +59,7 @@ namespace llvm {
/* A tight upper bound on number of parts required to hold the value
pow(5, power) is
power * 1024 / (441 * integerPartWidth) + 1
power * 815 / (351 * integerPartWidth) + 1
However, whilst the result may require only this many parts,
because we are multiplying two values to get it, the
@ -70,8 +70,8 @@ namespace llvm {
const unsigned int maxExponent = 16383;
const unsigned int maxPrecision = 113;
const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 1024)
/ (441 * integerPartWidth));
const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815)
/ (351 * integerPartWidth));
}
/* Put a bunch of private, handy routines in an anonymous namespace. */
@ -226,12 +226,19 @@ namespace {
dddd.dddd[eE][+-]ddd
where the decimal point and exponent are optional, fill out the
structure D. If the value is zero, V->firstSigDigit
points to a zero, and the return exponent is zero. */
structure D. Exponent is appropriate if the significand is
treated as an integer, and normalizedExponent if the significand
is taken to have the decimal point after a single leading
non-zero digit.
If the value is zero, V->firstSigDigit points to a zero, and the
return exponent is zero.
*/
struct decimalInfo {
const char *firstSigDigit;
const char *lastSigDigit;
int exponent;
int normalizedExponent;
};
void
@ -243,6 +250,7 @@ namespace {
D->firstSigDigit = p;
D->exponent = 0;
D->normalizedExponent = 0;
for (;;) {
if (*p == '.') {
@ -270,8 +278,10 @@ namespace {
while (*p == '0');
while (*p == '.');
/* Adjust the specified exponent for any decimal point. */
/* Adjust the exponents for any decimal point. */
D->exponent += (dot - p) - (dot > p);
D->normalizedExponent = (D->exponent + (p - D->firstSigDigit)
- (dot > D->firstSigDigit && dot < p));
}
D->lastSigDigit = p;
@ -2079,19 +2089,45 @@ APFloat::convertFromDecimalString(const char *p, roundingMode rounding_mode)
/* Scan the text. */
interpretDecimal(p, &D);
/* Handle the quick cases. First the case of no significant digits,
i.e. zero, and then exponents that are obviously too large or too
small. Writing L for log 10 / log 2, a number d.ddddd*10^exp
definitely overflows if
(exp - 1) * L >= maxExponent
and definitely underflows to zero where
(exp + 1) * L <= minExponent - precision
With integer arithmetic the tightest bounds for L are
93/28 < L < 196/59 [ numerator <= 256 ]
42039/12655 < L < 28738/8651 [ numerator <= 65536 ]
*/
if (*D.firstSigDigit == '0') {
category = fcZero;
fs = opOK;
} else if ((D.normalizedExponent + 1) * 28738
<= 8651 * (semantics->minExponent - (int) semantics->precision)) {
/* Underflow to zero and round. */
zeroSignificand();
fs = normalize(rounding_mode, lfLessThanHalf);
} else if ((D.normalizedExponent - 1) * 42039
>= 12655 * semantics->maxExponent) {
/* Overflow and round. */
fs = handleOverflow(rounding_mode);
} else {
integerPart *decSignificand;
unsigned int partCount;
/* A tight upper bound on number of bits required to hold an
N-digit decimal integer is N * 256 / 77. Allocate enough space
N-digit decimal integer is N * 196 / 59. Allocate enough space
to hold the full significand, and an extra part required by
tcMultiplyPart. */
partCount = (D.lastSigDigit - D.firstSigDigit) + 1;
partCount = partCountForBits(1 + 256 * partCount / 77);
partCount = partCountForBits(1 + 196 * partCount / 59);
decSignificand = new integerPart[partCount + 1];
partCount = 0;