Use the ClonedCodeInfo object to avoid scans of the inlined code when

it doesn't contain any calls.  This is a fairly common case for C++ code,
so it will probably speed up the inliner marginally in these cases.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@25284 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2006-01-13 19:15:15 +00:00
parent cd4d339ec1
commit 727d1dd587

View File

@ -51,70 +51,75 @@ static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
// The inlined code is currently at the end of the function, scan from the
// start of the inlined code to its end, checking for stuff we need to
// rewrite.
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB) {
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *I = BBI++;
// We only need to check for function calls: inlined invoke instructions
// require no special handling.
if (!isa<CallInst>(I)) continue;
CallInst *CI = cast<CallInst>(I);
if (InlinedCodeInfo.ContainsCalls || InlinedCodeInfo.ContainsUnwinds) {
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB) {
if (InlinedCodeInfo.ContainsCalls) {
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ){
Instruction *I = BBI++;
// We only need to check for function calls: inlined invoke
// instructions require no special handling.
if (!isa<CallInst>(I)) continue;
CallInst *CI = cast<CallInst>(I);
// If this is an intrinsic function call, do not convert it to an invoke.
if (CI->getCalledFunction() &&
CI->getCalledFunction()->getIntrinsicID())
continue;
// Convert this function call into an invoke instruction.
// First, split the basic block.
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
// Next, create the new invoke instruction, inserting it at the end
// of the old basic block.
InvokeInst *II =
new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
CI->getName(), BB->getTerminator());
II->setCallingConv(CI->getCallingConv());
// Make sure that anything using the call now uses the invoke!
CI->replaceAllUsesWith(II);
// Delete the unconditional branch inserted by splitBasicBlock
BB->getInstList().pop_back();
Split->getInstList().pop_front(); // Delete the original call
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
isa<PHINode>(I); ++I, ++i) {
PHINode *PN = cast<PHINode>(I);
PN->addIncoming(InvokeDestPHIValues[i], BB);
// If this is an intrinsic function call, don't convert it to an
// invoke.
if (CI->getCalledFunction() &&
CI->getCalledFunction()->getIntrinsicID())
continue;
// Convert this function call into an invoke instruction.
// First, split the basic block.
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
// Next, create the new invoke instruction, inserting it at the end
// of the old basic block.
InvokeInst *II =
new InvokeInst(CI->getCalledValue(), Split, InvokeDest,
std::vector<Value*>(CI->op_begin()+1, CI->op_end()),
CI->getName(), BB->getTerminator());
II->setCallingConv(CI->getCallingConv());
// Make sure that anything using the call now uses the invoke!
CI->replaceAllUsesWith(II);
// Delete the unconditional branch inserted by splitBasicBlock
BB->getInstList().pop_back();
Split->getInstList().pop_front(); // Delete the original call
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
isa<PHINode>(I); ++I, ++i) {
PHINode *PN = cast<PHINode>(I);
PN->addIncoming(InvokeDestPHIValues[i], BB);
}
// This basic block is now complete, start scanning the next one.
break;
}
}
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
// An UnwindInst requires special handling when it gets inlined into an
// invoke site. Once this happens, we know that the unwind would cause
// a control transfer to the invoke exception destination, so we can
// transform it into a direct branch to the exception destination.
new BranchInst(InvokeDest, UI);
// This basic block is now complete, start scanning the next one.
break;
}
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
// An UnwindInst requires special handling when it gets inlined into an
// invoke site. Once this happens, we know that the unwind would cause
// a control transfer to the invoke exception destination, so we can
// transform it into a direct branch to the exception destination.
new BranchInst(InvokeDest, UI);
// Delete the unwind instruction!
UI->getParent()->getInstList().pop_back();
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
isa<PHINode>(I); ++I, ++i) {
PHINode *PN = cast<PHINode>(I);
PN->addIncoming(InvokeDestPHIValues[i], BB);
// Delete the unwind instruction!
UI->getParent()->getInstList().pop_back();
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
unsigned i = 0;
for (BasicBlock::iterator I = InvokeDest->begin();
isa<PHINode>(I); ++I, ++i) {
PHINode *PN = cast<PHINode>(I);
PN->addIncoming(InvokeDestPHIValues[i], BB);
}
}
}
}