Split SmallVector into SmallVector and SmallVectorImpl, which allows us to

eliminate code duplication due to the 'N' parameter.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@29634 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2006-08-11 23:19:51 +00:00
parent 0e9402fad4
commit 80b6582314

View File

@ -20,63 +20,39 @@
namespace llvm {
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold. This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// Note that this does not attempt to be exception safe.
///
template <typename T, unsigned N>
class SmallVector {
/// SmallVectorImpl - This class consists of common code factored out of the
/// SmallVector class to reduce code duplication based on the SmallVector 'N'
/// template parameter.
template <typename T>
class SmallVectorImpl {
T *Begin, *End, *Capacity;
// Allocate raw space for N elements of type T. If T has a ctor or dtor, we
// don't want it to be automatically run, so we need to represent the space as
// something else. An array of char would work great, but might not be
// aligned sufficiently. Instead, we either use GCC extensions, or some
// number of union instances for the space, which guarantee maximal alignment.
protected:
union U {
double D;
long double LD;
long long L;
void *P;
};
/// InlineElts - These are the 'N' elements that are stored inline in the body
/// of the vector
U InlineElts[(sizeof(T)*N+sizeof(U)-1)/sizeof(U)];
T *Begin, *End, *Capacity;
} FirstEl;
// Space after 'FirstEl' is clobbered, do not add any instance vars after it.
public:
// Default ctor - Initialize to empty.
SmallVector() : Begin((T*)InlineElts), End(Begin), Capacity(Begin+N) {
SmallVectorImpl(unsigned N)
: Begin((T*)&FirstEl), End((T*)&FirstEl), Capacity((T*)&FirstEl+N) {
}
template<typename ItTy>
SmallVector(ItTy S, ItTy E)
: Begin((T*)InlineElts), End(Begin), Capacity(Begin+N) {
append(S, E);
}
SmallVector(const SmallVector &RHS) {
unsigned RHSSize = RHS.size();
Begin = (T*)InlineElts;
// Doesn't fit in the small case? Allocate space.
if (RHSSize > N) {
End = Capacity = Begin;
grow(RHSSize);
}
End = Begin+RHSSize;
Capacity = Begin+N;
std::uninitialized_copy(RHS.begin(), RHS.end(), Begin);
}
~SmallVector() {
~SmallVectorImpl() {
// Destroy the constructed elements in the vector.
for (iterator I = Begin, E = End; I != E; ++I)
I->~T();
// If this wasn't grown from the inline copy, deallocate the old space.
if ((void*)Begin != (void*)InlineElts)
if (!isSmall())
delete[] (char*)Begin;
}
@ -155,7 +131,7 @@ public:
new (Begin+NumElts-1) T(Elt);
}
const SmallVector &operator=(const SmallVector &RHS) {
const SmallVectorImpl &operator=(const SmallVectorImpl &RHS) {
// Avoid self-assignment.
if (this == &RHS) return *this;
@ -201,7 +177,7 @@ private:
/// isSmall - Return true if this is a smallvector which has not had dynamic
/// memory allocated for it.
bool isSmall() const {
return (void*)Begin == (void*)InlineElts;
return (void*)Begin == (void*)&FirstEl;
}
/// grow - double the size of the allocated memory, guaranteeing space for at
@ -231,6 +207,35 @@ private:
}
};
/// SmallVector - This is a 'vector' (really, a variable-sized array), optimized
/// for the case when the array is small. It contains some number of elements
/// in-place, which allows it to avoid heap allocation when the actual number of
/// elements is below that threshold. This allows normal "small" cases to be
/// fast without losing generality for large inputs.
///
/// Note that this does not attempt to be exception safe.
///
template <typename T, unsigned N>
class SmallVector : public SmallVectorImpl<T> {
/// InlineElts - These are 'N-1' elements that are stored inline in the body
/// of the vector. The extra '1' element is stored in SmallVectorImpl.
typedef typename SmallVectorImpl<T>::U U;
U InlineElts[(sizeof(T)*N+sizeof(U)-1)/sizeof(U) - 1];
public:
SmallVector() : SmallVectorImpl<T>(N) {
}
template<typename ItTy>
SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) {
append(S, E);
}
SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) {
operator=(RHS);
}
};
} // End llvm namespace
#endif