Add a verifyAnalysis to LoopInfo, LoopSimplify, and LCSSA form that verify

that these passes are properly preserved.

Fix several transformation passes that claimed to preserve LoopSimplify
form but weren't.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@80926 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2009-09-03 16:31:42 +00:00
parent c8b26880fd
commit 8fc5ad3369
10 changed files with 287 additions and 143 deletions

View File

@ -376,11 +376,73 @@ public:
/// verifyLoop - Verify loop structure
void verifyLoop() const {
#ifndef NDEBUG
assert (getHeader() && "Loop header is missing");
assert (getLoopPreheader() && "Loop preheader is missing");
assert (getLoopLatch() && "Loop latch is missing");
for (iterator I = SubLoops.begin(), E = SubLoops.end(); I != E; ++I)
assert(!Blocks.empty() && "Loop header is missing");
assert(getHeader() && "Loop header is missing");
// Verify the individual blocks.
for (block_iterator I = block_begin(), E = block_end(); I != E; ++I) {
BlockT *BB = *I;
bool HasInsideLoopSuccs = false;
bool HasInsideLoopPreds = false;
SmallVector<BlockT *, 2> OutsideLoopPreds;
typedef GraphTraits<BlockT*> BlockTraits;
for (typename BlockTraits::ChildIteratorType SI =
BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
SI != SE; ++SI)
if (contains(*SI))
HasInsideLoopSuccs = true;
typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
for (typename InvBlockTraits::ChildIteratorType PI =
InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
PI != PE; ++PI) {
if (contains(*PI))
HasInsideLoopPreds = true;
else
OutsideLoopPreds.push_back(*PI);
}
if (BB == getHeader()) {
assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
} else if (!OutsideLoopPreds.empty()) {
// A non-header loop shouldn't be reachable from outside the loop,
// though it is permitted if the predecessor is not itself actually
// reachable.
BlockT *EntryBB = BB->getParent()->begin();
for (df_iterator<BlockT *> NI = df_begin(EntryBB),
NE = df_end(EntryBB); NI != NE; ++NI)
for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
assert(*NI != OutsideLoopPreds[i] &&
"Loop has multiple entry points!");
}
assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
assert(BB != getHeader()->getParent()->begin() &&
"Loop contains function entry block!");
}
// Verify the subloops.
for (iterator I = begin(), E = end(); I != E; ++I) {
// Each block in each subloop should be contained within this loop.
for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
BI != BE; ++BI) {
assert(contains(*BI) &&
"Loop does not contain all the blocks of a subloop!");
}
// Recursively check the subloop.
(*I)->verifyLoop();
}
// Verify the parent loop.
if (ParentLoop) {
bool FoundSelf = false;
for (iterator I = ParentLoop->begin(), E = ParentLoop->end(); I != E; ++I)
if (*I == this) {
FoundSelf = true;
break;
}
assert(FoundSelf && "Loop is not a subloop of its parent!");
}
#endif
}
@ -873,6 +935,8 @@ public:
///
virtual bool runOnFunction(Function &F);
virtual void verifyAnalysis() const;
virtual void releaseMemory() { LI.releaseMemory(); }
virtual void print(raw_ostream &O, const Module* M = 0) const;

View File

@ -126,10 +126,10 @@ bool isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
/// dest go to one block instead of each going to a different block, but isn't
/// the standard definition of a "critical edge".
///
bool SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P = 0,
bool MergeIdenticalEdges = false);
BasicBlock *SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
Pass *P = 0, bool MergeIdenticalEdges = false);
inline bool SplitCriticalEdge(BasicBlock *BB, succ_iterator SI, Pass *P = 0) {
inline BasicBlock *SplitCriticalEdge(BasicBlock *BB, succ_iterator SI, Pass *P = 0) {
return SplitCriticalEdge(BB->getTerminator(), SI.getSuccessorIndex(), P);
}
@ -143,7 +143,7 @@ inline bool SplitCriticalEdge(BasicBlock *Succ, pred_iterator PI, Pass *P = 0) {
TerminatorInst *TI = (*PI)->getTerminator();
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
if (TI->getSuccessor(i) == Succ)
MadeChange |= SplitCriticalEdge(TI, i, P);
MadeChange |= !!SplitCriticalEdge(TI, i, P);
return MadeChange;
}
@ -151,8 +151,9 @@ inline bool SplitCriticalEdge(BasicBlock *Succ, pred_iterator PI, Pass *P = 0) {
/// and return true, otherwise return false. This method requires that there be
/// an edge between the two blocks. If P is specified, it updates the analyses
/// described above.
inline bool SplitCriticalEdge(BasicBlock *Src, BasicBlock *Dst, Pass *P = 0,
bool MergeIdenticalEdges = false) {
inline BasicBlock *SplitCriticalEdge(BasicBlock *Src, BasicBlock *Dst,
Pass *P = 0,
bool MergeIdenticalEdges = false) {
TerminatorInst *TI = Src->getTerminator();
unsigned i = 0;
while (1) {
@ -180,8 +181,12 @@ BasicBlock *SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P);
/// Preds array, which has NumPreds elements in it. The new block is given a
/// suffix of 'Suffix'. This function returns the new block.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
/// DominanceFrontier, but no other analyses.
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
/// In particular, it does not preserve LoopSimplify (because it's
/// complicated to handle the case where one of the edges being split
/// is an exit of a loop with other exits).
///
BasicBlock *SplitBlockPredecessors(BasicBlock *BB, BasicBlock *const *Preds,
unsigned NumPreds, const char *Suffix,
Pass *P = 0);

View File

@ -300,6 +300,9 @@ bool Loop::isLoopSimplifyForm() const {
///
void
Loop::getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const {
assert(isLoopSimplifyForm() &&
"getUniqueExitBlocks assumes the loop is in canonical form!");
// Sort the blocks vector so that we can use binary search to do quick
// lookups.
SmallVector<BasicBlock *, 128> LoopBBs(block_begin(), block_end());
@ -371,6 +374,13 @@ bool LoopInfo::runOnFunction(Function &) {
return false;
}
void LoopInfo::verifyAnalysis() const {
for (iterator I = begin(), E = end(); I != E; ++I) {
assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
(*I)->verifyLoop();
}
}
void LoopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTree>();

View File

@ -91,6 +91,7 @@ namespace {
AU.addRequired<AliasAnalysis>();
AU.addPreserved<ScalarEvolution>();
AU.addPreserved<DominanceFrontier>();
AU.addPreservedID(LoopSimplifyID);
}
bool doFinalization() {

View File

@ -484,36 +484,37 @@ void BasedUser::RewriteInstructionToUseNewBase(const SCEV *const &NewBase,
// loop because multiple copies sometimes do useful sinking of code in
// that case(?).
Instruction *OldLoc = dyn_cast<Instruction>(OperandValToReplace);
BasicBlock *PHIPred = PN->getIncomingBlock(i);
if (L->contains(OldLoc->getParent())) {
// If this is a critical edge, split the edge so that we do not insert
// the code on all predecessor/successor paths. We do this unless this
// is the canonical backedge for this loop, as this can make some
// inserted code be in an illegal position.
BasicBlock *PHIPred = PN->getIncomingBlock(i);
if (e != 1 && PHIPred->getTerminator()->getNumSuccessors() > 1 &&
(PN->getParent() != L->getHeader() || !L->contains(PHIPred))) {
// First step, split the critical edge.
SplitCriticalEdge(PHIPred, PN->getParent(), P, false);
BasicBlock *NewBB = SplitCriticalEdge(PHIPred, PN->getParent(),
P, false);
// Next step: move the basic block. In particular, if the PHI node
// is outside of the loop, and PredTI is in the loop, we want to
// move the block to be immediately before the PHI block, not
// immediately after PredTI.
if (L->contains(PHIPred) && !L->contains(PN->getParent())) {
BasicBlock *NewBB = PN->getIncomingBlock(i);
if (L->contains(PHIPred) && !L->contains(PN->getParent()))
NewBB->moveBefore(PN->getParent());
}
// Splitting the edge can reduce the number of PHI entries we have.
e = PN->getNumIncomingValues();
PHIPred = NewBB;
i = PN->getBasicBlockIndex(PHIPred);
}
}
Value *&Code = InsertedCode[PN->getIncomingBlock(i)];
Value *&Code = InsertedCode[PHIPred];
if (!Code) {
// Insert the code into the end of the predecessor block.
Instruction *InsertPt = (L->contains(OldLoc->getParent())) ?
PN->getIncomingBlock(i)->getTerminator() :
PHIPred->getTerminator() :
OldLoc->getParent()->getTerminator();
Code = InsertCodeForBaseAtPosition(NewBase, PN->getType(),
Rewriter, InsertPt, L, LI);

View File

@ -518,7 +518,12 @@ void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
std::swap(TrueDest, FalseDest);
// Insert the new branch.
BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
BranchInst *BI = BranchInst::Create(TrueDest, FalseDest, BranchVal, InsertPt);
// If either edge is critical, split it. This helps preserve LoopSimplify
// form for enclosing loops.
SplitCriticalEdge(BI, 0, this);
SplitCriticalEdge(BI, 1, this);
}
/// UnswitchTrivialCondition - Given a loop that has a trivial unswitchable
@ -575,47 +580,11 @@ void LoopUnswitch::SplitExitEdges(Loop *L,
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i];
std::vector<BasicBlock*> Preds(pred_begin(ExitBlock), pred_end(ExitBlock));
for (unsigned j = 0, e = Preds.size(); j != e; ++j) {
BasicBlock* NewExitBlock = SplitEdge(Preds[j], ExitBlock, this);
BasicBlock* StartBlock = Preds[j];
BasicBlock* EndBlock;
if (NewExitBlock->getSinglePredecessor() == ExitBlock) {
EndBlock = NewExitBlock;
NewExitBlock = EndBlock->getSinglePredecessor();
} else {
EndBlock = ExitBlock;
}
std::set<PHINode*> InsertedPHIs;
PHINode* OldLCSSA = 0;
for (BasicBlock::iterator I = EndBlock->begin();
(OldLCSSA = dyn_cast<PHINode>(I)); ++I) {
Value* OldValue = OldLCSSA->getIncomingValueForBlock(NewExitBlock);
PHINode* NewLCSSA = PHINode::Create(OldLCSSA->getType(),
OldLCSSA->getName() + ".us-lcssa",
NewExitBlock->getTerminator());
NewLCSSA->addIncoming(OldValue, StartBlock);
OldLCSSA->setIncomingValue(OldLCSSA->getBasicBlockIndex(NewExitBlock),
NewLCSSA);
InsertedPHIs.insert(NewLCSSA);
}
BasicBlock::iterator InsertPt = EndBlock->getFirstNonPHI();
for (BasicBlock::iterator I = NewExitBlock->begin();
(OldLCSSA = dyn_cast<PHINode>(I)) && InsertedPHIs.count(OldLCSSA) == 0;
++I) {
PHINode *NewLCSSA = PHINode::Create(OldLCSSA->getType(),
OldLCSSA->getName() + ".us-lcssa",
InsertPt);
OldLCSSA->replaceAllUsesWith(NewLCSSA);
NewLCSSA->addIncoming(OldLCSSA, NewExitBlock);
}
}
SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
pred_end(ExitBlock));
SplitBlockPredecessors(ExitBlock, Preds.data(), Preds.size(),
".us-lcssa", this);
}
}
/// UnswitchNontrivialCondition - We determined that the loop is profitable
@ -945,27 +914,29 @@ void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
// FIXME: This is a hack. We need to keep the successor around
// and hooked up so as to preserve the loop structure, because
// trying to update it is complicated. So instead we preserve the
// loop structure and put the block on an dead code path.
BasicBlock *SISucc = SI->getSuccessor(i);
BasicBlock* Old = SI->getParent();
BasicBlock* Split = SplitBlock(Old, SI, this);
Instruction* OldTerm = Old->getTerminator();
BranchInst::Create(Split, SISucc,
ConstantInt::getTrue(Context), OldTerm);
LPM->deleteSimpleAnalysisValue(Old->getTerminator(), L);
Old->getTerminator()->eraseFromParent();
PHINode *PN;
for (BasicBlock::iterator II = SISucc->begin();
(PN = dyn_cast<PHINode>(II)); ++II) {
Value *InVal = PN->removeIncomingValue(Split, false);
PN->addIncoming(InVal, Old);
}
SI->removeCase(i);
// loop structure and put the block on a dead code path.
BasicBlock *Switch = SI->getParent();
SplitEdge(Switch, SI->getSuccessor(i), this);
// Compute the successors instead of relying on the return value
// of SplitEdge, since it may have split the switch successor
// after PHI nodes.
BasicBlock *NewSISucc = SI->getSuccessor(i);
BasicBlock *OldSISucc = *succ_begin(NewSISucc);
// Create an "unreachable" destination.
BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
Switch->getParent(),
OldSISucc);
new UnreachableInst(Context, Abort);
// Force the new case destination to branch to the "unreachable"
// block while maintaining a (dead) CFG edge to the old block.
NewSISucc->getTerminator()->eraseFromParent();
BranchInst::Create(Abort, OldSISucc,
ConstantInt::getTrue(Context), NewSISucc);
// Release the PHI operands for this edge.
for (BasicBlock::iterator II = NewSISucc->begin();
PHINode *PN = dyn_cast<PHINode>(II); ++II)
PN->setIncomingValue(PN->getBasicBlockIndex(Switch),
UndefValue::get(PN->getType()));
break;
}
}

View File

@ -24,6 +24,7 @@
#include "llvm/Analysis/Dominators.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ValueHandle.h"
#include <algorithm>
@ -319,7 +320,8 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
++SplitIt;
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
// The new block lives in whichever loop the old one did.
// The new block lives in whichever loop the old one did. This preserves
// LCSSA as well, because we force the split point to be after any PHI nodes.
if (LoopInfo* LI = P->getAnalysisIfAvailable<LoopInfo>())
if (Loop *L = LI->getLoopFor(Old))
L->addBasicBlockToLoop(New, LI->getBase());
@ -353,8 +355,12 @@ BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) {
/// Preds array, which has NumPreds elements in it. The new block is given a
/// suffix of 'Suffix'.
///
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree and
/// DominanceFrontier, but no other analyses.
/// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
/// DominanceFrontier, LoopInfo, and LCCSA but no other analyses.
/// In particular, it does not preserve LoopSimplify (because it's
/// complicated to handle the case where one of the edges being split
/// is an exit of a loop with other exits).
///
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
BasicBlock *const *Preds,
unsigned NumPreds, const char *Suffix,
@ -366,19 +372,44 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
// The new block unconditionally branches to the old block.
BranchInst *BI = BranchInst::Create(BB, NewBB);
LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0;
Loop *L = LI ? LI->getLoopFor(BB) : 0;
bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID);
// Move the edges from Preds to point to NewBB instead of BB.
for (unsigned i = 0; i != NumPreds; ++i)
// While here, if we need to preserve loop analyses, collect
// some information about how this split will affect loops.
bool HasLoopExit = false;
bool IsLoopEntry = !!L;
bool SplitMakesNewLoopHeader = false;
for (unsigned i = 0; i != NumPreds; ++i) {
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
if (LI) {
// If we need to preserve LCSSA, determine if any of
// the preds is a loop exit.
if (PreserveLCSSA)
if (Loop *PL = LI->getLoopFor(Preds[i]))
if (!PL->contains(BB))
HasLoopExit = true;
// If we need to preserve LoopInfo, note whether any of the
// preds crosses an interesting loop boundary.
if (L) {
if (L->contains(Preds[i]))
IsLoopEntry = false;
else
SplitMakesNewLoopHeader = true;
}
}
}
// Update dominator tree and dominator frontier if available.
DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0;
if (DT)
DT->splitBlock(NewBB);
if (DominanceFrontier *DF = P ? P->getAnalysisIfAvailable<DominanceFrontier>():0)
DF->splitBlock(NewBB);
AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
// node becomes an incoming value for BB's phi node. However, if the Preds
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
@ -389,20 +420,42 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
return NewBB;
}
AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0;
if (L) {
if (IsLoopEntry) {
if (Loop *PredLoop = LI->getLoopFor(Preds[0])) {
// Add the new block to the nearest enclosing loop (and not an
// adjacent loop).
while (PredLoop && !PredLoop->contains(BB))
PredLoop = PredLoop->getParentLoop();
if (PredLoop)
PredLoop->addBasicBlockToLoop(NewBB, LI->getBase());
}
} else {
L->addBasicBlockToLoop(NewBB, LI->getBase());
if (SplitMakesNewLoopHeader)
L->moveToHeader(NewBB);
}
}
// Otherwise, create a new PHI node in NewBB for each PHI node in BB.
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) {
PHINode *PN = cast<PHINode>(I++);
// Check to see if all of the values coming in are the same. If so, we
// don't need to create a new PHI node.
Value *InVal = PN->getIncomingValueForBlock(Preds[0]);
for (unsigned i = 1; i != NumPreds; ++i)
if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
InVal = 0;
break;
}
// don't need to create a new PHI node, unless it's needed for LCSSA.
Value *InVal = 0;
if (!HasLoopExit) {
InVal = PN->getIncomingValueForBlock(Preds[0]);
for (unsigned i = 1; i != NumPreds; ++i)
if (InVal != PN->getIncomingValueForBlock(Preds[i])) {
InVal = 0;
break;
}
}
if (InVal) {
// If all incoming values for the new PHI would be the same, just don't
// make a new PHI. Instead, just remove the incoming values from the old
@ -427,13 +480,6 @@ BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
// Add an incoming value to the PHI node in the loop for the preheader
// edge.
PN->addIncoming(InVal, NewBB);
// Check to see if we can eliminate this phi node.
if (Value *V = PN->hasConstantValue(DT)) {
PN->replaceAllUsesWith(V);
if (AA) AA->deleteValue(PN);
PN->eraseFromParent();
}
}
return NewBB;

View File

@ -122,9 +122,9 @@ bool llvm::isCriticalEdge(const TerminatorInst *TI, unsigned SuccNum,
/// false otherwise. This ensures that all edges to that dest go to one block
/// instead of each going to a different block.
//
bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
bool MergeIdenticalEdges) {
if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return false;
BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
Pass *P, bool MergeIdenticalEdges) {
if (!isCriticalEdge(TI, SuccNum, MergeIdenticalEdges)) return 0;
BasicBlock *TIBB = TI->getParent();
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
@ -172,7 +172,7 @@ bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
// If we don't have a pass object, we can't update anything...
if (P == 0) return true;
if (P == 0) return NewBB;
// Now update analysis information. Since the only predecessor of NewBB is
// the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate
@ -254,9 +254,9 @@ bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
// Update LoopInfo if it is around.
if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (Loop *TIL = LI->getLoopFor(TIBB))
if (Loop *TIL = LI->getLoopFor(TIBB)) {
// If one or the other blocks were not in a loop, the new block is not
// either, and thus LI doesn't need to be updated.
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
if (TIL == DestLoop) {
// Both in the same loop, the NewBB joins loop.
@ -278,6 +278,55 @@ bool llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, Pass *P,
P->addBasicBlockToLoop(NewBB, LI->getBase());
}
}
// If TIBB is in a loop and DestBB is outside of that loop, split the
// other exit blocks of the loop that also have predecessors outside
// the loop, to maintain a LoopSimplify guarantee.
if (!TIL->contains(DestBB) &&
P->mustPreserveAnalysisID(LoopSimplifyID)) {
// For each unique exit block...
SmallVector<BasicBlock *, 4> ExitBlocks;
TIL->getExitBlocks(ExitBlocks);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
// Collect all the preds that are inside the loop, and note
// whether there are any preds outside the loop.
SmallVector<BasicBlock *, 4> Preds;
bool AllPredsInLoop = false;
BasicBlock *Exit = ExitBlocks[i];
for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit);
I != E; ++I)
if (TIL->contains(*I))
Preds.push_back(*I);
else
AllPredsInLoop = true;
// If there are any preds not in the loop, we'll need to split
// the edges. The Preds.empty() check is needed because a block
// may appear multiple times in the list. We can't use
// getUniqueExitBlocks above because that depends on LoopSimplify
// form, which we're in the process of restoring!
if (Preds.empty() || !AllPredsInLoop) continue;
BasicBlock *NewBB = SplitBlockPredecessors(Exit,
Preds.data(), Preds.size(),
"split", P);
// Update LCSSA form. This is fairly simple in LoopSimplify form:
// just move the existing LCSSA-mandated PHI nodes from the old exit
// block to the new one.
if (P->mustPreserveAnalysisID(LCSSAID))
for (BasicBlock::iterator I = Exit->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PN->moveBefore(NewBB->getTerminator());
}
}
// LCSSA form was updated above for the case where LoopSimplify is
// available, which means that all predecessors of loop exit blocks
// are within the loop. Without LoopSimplify form, it would be
// necessary to insert a new phi.
assert((!P->mustPreserveAnalysisID(LCSSAID) ||
P->mustPreserveAnalysisID(LoopSimplifyID)) &&
"SplitCriticalEdge doesn't know how to update LCCSA form "
"without LoopSimplify!");
}
}
return true;
return NewBB;
}

View File

@ -58,6 +58,7 @@ namespace {
DominatorTree *DT;
std::vector<BasicBlock*> LoopBlocks;
PredIteratorCache PredCache;
Loop *L;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
@ -72,9 +73,9 @@ namespace {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addRequiredTransitive<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequiredTransitive<DominatorTree>();
AU.addPreserved<ScalarEvolution>();
AU.addPreserved<DominatorTree>();
@ -86,6 +87,17 @@ namespace {
AU.addPreserved<DominanceFrontier>();
}
private:
/// verifyAnalysis() - Verify loop nest.
virtual void verifyAnalysis() const {
#ifndef NDEBUG
// Sanity check: Check basic loop invariants.
L->verifyLoop();
// Check the special guarantees that LCSSA makes.
assert(L->isLCSSAForm());
#endif
}
void getLoopValuesUsedOutsideLoop(Loop *L,
SetVector<Instruction*> &AffectedValues,
const SmallVector<BasicBlock*, 8>& exitBlocks);
@ -107,7 +119,8 @@ Pass *llvm::createLCSSAPass() { return new LCSSA(); }
const PassInfo *const llvm::LCSSAID = &X;
/// runOnFunction - Process all loops in the function, inner-most out.
bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) {
bool LCSSA::runOnLoop(Loop *l, LPPassManager &LPM) {
L = l;
PredCache.clear();
LI = &LPM.getAnalysis<LoopInfo>();

View File

@ -69,8 +69,8 @@ namespace {
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
// We need loop information to identify the loops...
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequiredTransitive<LoopInfo>();
AU.addRequiredTransitive<DominatorTree>();
AU.addPreserved<LoopInfo>();
AU.addPreserved<DominatorTree>();
@ -83,9 +83,13 @@ namespace {
void verifyAnalysis() const {
#ifndef NDEBUG
LoopInfo *NLI = &getAnalysis<LoopInfo>();
for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I)
for (LoopInfo::iterator I = NLI->begin(), E = NLI->end(); I != E; ++I) {
// Sanity check: Check basic loop invariants.
(*I)->verifyLoop();
#endif
// Check the special guarantees that LoopSimplify makes.
assert((*I)->isLoopSimplifyForm());
}
#endif
}
private:
@ -346,15 +350,6 @@ BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) {
BasicBlock *NewBB =
SplitBlockPredecessors(Header, &OutsideBlocks[0], OutsideBlocks.size(),
".preheader", this);
//===--------------------------------------------------------------------===//
// Update analysis results now that we have performed the transformation
//
// We know that we have loop information to update... update it now.
if (Loop *Parent = L->getParentLoop())
Parent->addBasicBlockToLoop(NewBB, LI->getBase());
// Make sure that NewBB is put someplace intelligent, which doesn't mess up
// code layout too horribly.
@ -377,17 +372,6 @@ BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) {
LoopBlocks.size(), ".loopexit",
this);
// Update Loop Information - we know that the new block will be in whichever
// loop the Exit block is in. Note that it may not be in that immediate loop,
// if the successor is some other loop header. In that case, we continue
// walking up the loop tree to find a loop that contains both the successor
// block and the predecessor block.
Loop *SuccLoop = LI->getLoopFor(Exit);
while (SuccLoop && !SuccLoop->contains(L->getHeader()))
SuccLoop = SuccLoop->getParentLoop();
if (SuccLoop)
SuccLoop->addBasicBlockToLoop(NewBB, LI->getBase());
return NewBB;
}
@ -521,10 +505,6 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
else
LI->changeTopLevelLoop(L, NewOuter);
// This block is going to be our new header block: add it to this loop and all
// parent loops.
NewOuter->addBasicBlockToLoop(NewBB, LI->getBase());
// L is now a subloop of our outer loop.
NewOuter->addChildLoop(L);
@ -532,6 +512,10 @@ Loop *LoopSimplify::SeparateNestedLoop(Loop *L) {
I != E; ++I)
NewOuter->addBlockEntry(*I);
// Now reset the header in L, which had been moved by
// SplitBlockPredecessors for the outer loop.
L->moveToHeader(Header);
// Determine which blocks should stay in L and which should be moved out to
// the Outer loop now.
std::set<BasicBlock*> BlocksInL;