mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-03-05 12:31:46 +00:00
Add a new LoadAndStorePromoter class, which implements the general
"promote a bunch of load and stores" logic, allowing the code to be shared and reused. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@123456 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
f18e4c3ab4
commit
a2d845a3ff
@ -108,6 +108,38 @@ private:
|
||||
void operator=(const SSAUpdater&); // DO NOT IMPLEMENT
|
||||
SSAUpdater(const SSAUpdater&); // DO NOT IMPLEMENT
|
||||
};
|
||||
|
||||
/// LoadAndStorePromoter - This little helper class provides a convenient way to
|
||||
/// promote a collection of loads and stores into SSA Form using the SSAUpdater.
|
||||
/// This handles complexities that SSAUpdater doesn't, such as multiple loads
|
||||
/// and stores in one block.
|
||||
///
|
||||
/// Clients of this class are expected to subclass this and implement the
|
||||
/// virtual methods.
|
||||
///
|
||||
class LoadAndStorePromoter {
|
||||
public:
|
||||
LoadAndStorePromoter() {}
|
||||
virtual ~LoadAndStorePromoter() {}
|
||||
|
||||
/// run - This does the promotion. Insts is a list of loads and stores to
|
||||
/// promote, and Name is the basename for the PHIs to insert. After this is
|
||||
/// complete, the loads and stores are removed from the code.
|
||||
void run(StringRef Name, const SmallVectorImpl<Instruction*> &Insts,
|
||||
SSAUpdater *SSA = 0);
|
||||
|
||||
|
||||
/// Return true if the specified instruction is in the Inst list (which was
|
||||
/// passed into the run method). Clients should implement this with a more
|
||||
/// efficient version if possible.
|
||||
virtual bool isInstInList(Instruction *I,
|
||||
const SmallVectorImpl<Instruction*> &Insts) const {
|
||||
for (unsigned i = 0, e = Insts.size(); i != e; ++i)
|
||||
if (Insts[i] == I)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
} // End llvm namespace
|
||||
|
||||
|
@ -343,3 +343,157 @@ Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) {
|
||||
SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs);
|
||||
return Impl.GetValue(BB);
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// LoadAndStorePromoter Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
void LoadAndStorePromoter::run(StringRef BaseName,
|
||||
const SmallVectorImpl<Instruction*> &Insts,
|
||||
SSAUpdater *SSA) {
|
||||
if (Insts.empty()) return;
|
||||
|
||||
// If no SSAUpdater was provided, use a default one. This allows the client
|
||||
// to capture inserted PHI nodes etc if they want.
|
||||
SSAUpdater DefaultSSA;
|
||||
if (SSA == 0) SSA = &DefaultSSA;
|
||||
|
||||
const Type *ValTy;
|
||||
if (LoadInst *LI = dyn_cast<LoadInst>(Insts[0]))
|
||||
ValTy = LI->getType();
|
||||
else
|
||||
ValTy = cast<StoreInst>(Insts[0])->getOperand(0)->getType();
|
||||
|
||||
SSA->Initialize(ValTy, BaseName);
|
||||
|
||||
// First step: bucket up uses of the alloca by the block they occur in.
|
||||
// This is important because we have to handle multiple defs/uses in a block
|
||||
// ourselves: SSAUpdater is purely for cross-block references.
|
||||
// FIXME: Want a TinyVector<Instruction*> since there is often 0/1 element.
|
||||
DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
|
||||
|
||||
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
|
||||
Instruction *User = Insts[i];
|
||||
UsesByBlock[User->getParent()].push_back(User);
|
||||
}
|
||||
|
||||
// Okay, now we can iterate over all the blocks in the function with uses,
|
||||
// processing them. Keep track of which loads are loading a live-in value.
|
||||
// Walk the uses in the use-list order to be determinstic.
|
||||
SmallVector<LoadInst*, 32> LiveInLoads;
|
||||
DenseMap<Value*, Value*> ReplacedLoads;
|
||||
|
||||
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
|
||||
Instruction *User = Insts[i];
|
||||
BasicBlock *BB = User->getParent();
|
||||
std::vector<Instruction*> &BlockUses = UsesByBlock[BB];
|
||||
|
||||
// If this block has already been processed, ignore this repeat use.
|
||||
if (BlockUses.empty()) continue;
|
||||
|
||||
// Okay, this is the first use in the block. If this block just has a
|
||||
// single user in it, we can rewrite it trivially.
|
||||
if (BlockUses.size() == 1) {
|
||||
// If it is a store, it is a trivial def of the value in the block.
|
||||
if (StoreInst *SI = dyn_cast<StoreInst>(User))
|
||||
SSA->AddAvailableValue(BB, SI->getOperand(0));
|
||||
else
|
||||
// Otherwise it is a load, queue it to rewrite as a live-in load.
|
||||
LiveInLoads.push_back(cast<LoadInst>(User));
|
||||
BlockUses.clear();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Otherwise, check to see if this block is all loads.
|
||||
bool HasStore = false;
|
||||
for (unsigned i = 0, e = BlockUses.size(); i != e; ++i) {
|
||||
if (isa<StoreInst>(BlockUses[i])) {
|
||||
HasStore = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// If so, we can queue them all as live in loads. We don't have an
|
||||
// efficient way to tell which on is first in the block and don't want to
|
||||
// scan large blocks, so just add all loads as live ins.
|
||||
if (!HasStore) {
|
||||
for (unsigned i = 0, e = BlockUses.size(); i != e; ++i)
|
||||
LiveInLoads.push_back(cast<LoadInst>(BlockUses[i]));
|
||||
BlockUses.clear();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Otherwise, we have mixed loads and stores (or just a bunch of stores).
|
||||
// Since SSAUpdater is purely for cross-block values, we need to determine
|
||||
// the order of these instructions in the block. If the first use in the
|
||||
// block is a load, then it uses the live in value. The last store defines
|
||||
// the live out value. We handle this by doing a linear scan of the block.
|
||||
Value *StoredValue = 0;
|
||||
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
|
||||
if (LoadInst *L = dyn_cast<LoadInst>(II)) {
|
||||
// If this is a load from an unrelated pointer, ignore it.
|
||||
if (!isInstInList(L, Insts)) continue;
|
||||
|
||||
// If we haven't seen a store yet, this is a live in use, otherwise
|
||||
// use the stored value.
|
||||
if (StoredValue) {
|
||||
L->replaceAllUsesWith(StoredValue);
|
||||
ReplacedLoads[L] = StoredValue;
|
||||
} else {
|
||||
LiveInLoads.push_back(L);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (StoreInst *S = dyn_cast<StoreInst>(II)) {
|
||||
// If this is a store to an unrelated pointer, ignore it.
|
||||
if (!isInstInList(S, Insts)) continue;
|
||||
|
||||
// Remember that this is the active value in the block.
|
||||
StoredValue = S->getOperand(0);
|
||||
}
|
||||
}
|
||||
|
||||
// The last stored value that happened is the live-out for the block.
|
||||
assert(StoredValue && "Already checked that there is a store in block");
|
||||
SSA->AddAvailableValue(BB, StoredValue);
|
||||
BlockUses.clear();
|
||||
}
|
||||
|
||||
// Okay, now we rewrite all loads that use live-in values in the loop,
|
||||
// inserting PHI nodes as necessary.
|
||||
for (unsigned i = 0, e = LiveInLoads.size(); i != e; ++i) {
|
||||
LoadInst *ALoad = LiveInLoads[i];
|
||||
Value *NewVal = SSA->GetValueInMiddleOfBlock(ALoad->getParent());
|
||||
ALoad->replaceAllUsesWith(NewVal);
|
||||
ReplacedLoads[ALoad] = NewVal;
|
||||
}
|
||||
|
||||
// Now that everything is rewritten, delete the old instructions from the
|
||||
// function. They should all be dead now.
|
||||
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
|
||||
Instruction *User = Insts[i];
|
||||
|
||||
// If this is a load that still has uses, then the load must have been added
|
||||
// as a live value in the SSAUpdate data structure for a block (e.g. because
|
||||
// the loaded value was stored later). In this case, we need to recursively
|
||||
// propagate the updates until we get to the real value.
|
||||
if (!User->use_empty()) {
|
||||
Value *NewVal = ReplacedLoads[User];
|
||||
assert(NewVal && "not a replaced load?");
|
||||
|
||||
// Propagate down to the ultimate replacee. The intermediately loads
|
||||
// could theoretically already have been deleted, so we don't want to
|
||||
// dereference the Value*'s.
|
||||
DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal);
|
||||
while (RLI != ReplacedLoads.end()) {
|
||||
NewVal = RLI->second;
|
||||
RLI = ReplacedLoads.find(NewVal);
|
||||
}
|
||||
|
||||
User->replaceAllUsesWith(NewVal);
|
||||
}
|
||||
|
||||
User->eraseFromParent();
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user