introduce a new RoundUpAlignment helper function, use it to

remove some more 64-bit divs and rems from the StructLayout 
ctor.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60692 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2008-12-08 07:11:56 +00:00
parent 149cfc3519
commit bedb8c1d35
2 changed files with 40 additions and 37 deletions

View File

@ -178,12 +178,8 @@ public:
/// that alloca reserves for this type. For example, returns 12 or 16 for
/// x86_fp80, depending on alignment.
uint64_t getABITypeSize(const Type* Ty) const {
// The alignment of a type is always a power of two.
unsigned char AlignMinusOne = getABITypeAlignment(Ty)-1;
// Round up to the next alignment boundary.
uint64_t RoundUp = getTypeStoreSize(Ty) + AlignMinusOne;
return RoundUp &= ~uint64_t(AlignMinusOne);
return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
}
/// getABITypeSizeInBits - Return the offset in bits between successive
@ -244,6 +240,16 @@ public:
/// requested alignment (if the global has one).
unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
/// RoundUpAlignment - Round the specified value up to the next alignment
/// boundary specified by Alignment. For example, 7 rounded up to an
/// alignment boundary of 4 is 8. 8 rounded up to the alignment boundary of 4
/// is 8 because it is already aligned.
template <typename UIntTy>
static UIntTy RoundUpAlignment(UIntTy Val, unsigned Alignment) {
assert((Alignment & (Alignment-1)) == 0 && "Alignment must be power of 2!");
return (Val + (Alignment-1)) & ~UIntTy(Alignment-1);
}
static char ID; // Pass identification, replacement for typeid
};

View File

@ -45,15 +45,16 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
StructSize = 0;
NumElements = ST->getNumElements();
// Loop over each of the elements, placing them in memory...
// Loop over each of the elements, placing them in memory.
for (unsigned i = 0, e = NumElements; i != e; ++i) {
const Type *Ty = ST->getElementType(i);
unsigned TyAlign = ST->isPacked() ? 1 : TD.getABITypeAlignment(Ty);
// Add padding if necessary to align the data element properly...
StructSize = (StructSize + TyAlign - 1)/TyAlign * TyAlign;
// Add padding if necessary to align the data element properly.
if (StructSize & TyAlign-1)
StructSize = TargetData::RoundUpAlignment(StructSize, TyAlign);
// Keep track of maximum alignment constraint
// Keep track of maximum alignment constraint.
StructAlignment = std::max(TyAlign, StructAlignment);
MemberOffsets[i] = StructSize;
@ -65,8 +66,8 @@ StructLayout::StructLayout(const StructType *ST, const TargetData &TD) {
// Add padding to the end of the struct so that it could be put in an array
// and all array elements would be aligned correctly.
if (StructSize % StructAlignment != 0)
StructSize = (StructSize/StructAlignment + 1) * StructAlignment;
if (StructSize & (StructAlignment-1) != 0)
StructSize = TargetData::RoundUpAlignment(StructSize, StructAlignment);
}
@ -346,18 +347,18 @@ typedef DenseMap<LayoutKey, StructLayout*, DenseMapLayoutKeyInfo> LayoutInfoTy;
static ManagedStatic<LayoutInfoTy> LayoutInfo;
TargetData::~TargetData() {
if (LayoutInfo.isConstructed()) {
// Remove any layouts for this TD.
LayoutInfoTy &TheMap = *LayoutInfo;
for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end();
I != E; ) {
if (I->first.first == this) {
I->second->~StructLayout();
free(I->second);
TheMap.erase(I++);
} else {
++I;
}
if (!LayoutInfo.isConstructed())
return;
// Remove any layouts for this TD.
LayoutInfoTy &TheMap = *LayoutInfo;
for (LayoutInfoTy::iterator I = TheMap.begin(), E = TheMap.end(); I != E; ) {
if (I->first.first == this) {
I->second->~StructLayout();
free(I->second);
TheMap.erase(I++);
} else {
++I;
}
}
}
@ -390,11 +391,11 @@ void TargetData::InvalidateStructLayoutInfo(const StructType *Ty) const {
if (!LayoutInfo.isConstructed()) return; // No cache.
LayoutInfoTy::iterator I = LayoutInfo->find(LayoutKey(this, Ty));
if (I != LayoutInfo->end()) {
I->second->~StructLayout();
free(I->second);
LayoutInfo->erase(I);
}
if (I == LayoutInfo->end()) return;
I->second->~StructLayout();
free(I->second);
LayoutInfo->erase(I);
}
@ -426,11 +427,9 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
const ArrayType *ATy = cast<ArrayType>(Ty);
return getABITypeSizeInBits(ATy->getElementType())*ATy->getNumElements();
}
case Type::StructTyID: {
case Type::StructTyID:
// Get the layout annotation... which is lazily created on demand.
const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
return Layout->getSizeInBits();
}
return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
case Type::IntegerTyID:
return cast<IntegerType>(Ty)->getBitWidth();
case Type::VoidTyID:
@ -446,10 +445,8 @@ uint64_t TargetData::getTypeSizeInBits(const Type *Ty) const {
// only 80 bits contain information.
case Type::X86_FP80TyID:
return 80;
case Type::VectorTyID: {
const VectorType *PTy = cast<VectorType>(Ty);
return PTy->getBitWidth();
}
case Type::VectorTyID:
return cast<VectorType>(Ty)->getBitWidth();
default:
assert(0 && "TargetData::getTypeSizeInBits(): Unsupported type");
break;
@ -470,7 +467,7 @@ unsigned char TargetData::getAlignment(const Type *Ty, bool abi_or_pref) const {
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
switch (Ty->getTypeID()) {
/* Early escape for the non-numeric types */
// Early escape for the non-numeric types.
case Type::LabelTyID:
case Type::PointerTyID:
return (abi_or_pref